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ポイント 
① 3体核力は原子核や中性子星など様々な局面で重要な寄与を果たすが、その全容は未解明 
② 先鋭的理論に基づいて、3体核力が物質を安定にする仕組みを世界で初めて解明 
③ 宇宙物理、物性物理、量子情報、量子技術など分野を超えた将来研究・波及効果に期待 

概要 
 

 

　原子核を構成する核子の間にはたらく力は、核子同士のキャッチボールに喩えられます。3つの核
子間のキャッチボール(3体核力(※1))は、極微の原子核に留まらず中性子星のような天体に至るまで、
物質の安定性に本質的な寄与を果たすことが知られています。その詳細な仕組みは長らく謎でした。
40年以上前の先行研究による重要な示唆があるものの、3つの核子間のキャッチボールに関する知識
が当時は乏しかったため、決定的な結論を導くことはできていませんでした。 
　本研究によってこの謎を解明することができました。3つの核子がキャッチボールをするとき、核
子は量子力学に従い、いくつかの運動パターンだけが許されます。そして、特にそのうちの1つの運
動パターンにおいて3つの核子がお互いを引きつけ合い、物質を安定化させているのです。 
　九州大学基幹教育院の福井徳朗助教、Università degli studi della CampaniaのGiovanni De Gregorio 
研究員、Istituto Nazionale di Fisica NucleareのAngela Gargano研究員からなる国際研究グループは、3
つの核子間のキャッチボールの仕組みを理論的に解き明かしました。これを可能にしたのが、先鋭的な核
力理論(※2)とスーパーコンピュータを駆使したシミュレーションです。計算の結果、2つのボール(中間
子(※3))を使って3つの核子がキャッチボールをすることで引力が働き、原子核中の核子をおとなしくさ
せている(励起しにくくしている)ことが示されました。 

　3つの核子が2つのボールを投げ合うと、核子対の反対称なスピン状態と対称なスピン状態(※4)が区
別できなくなるという現象が起こります。この現象は、2つの核子がキャッチボールをする際には決
して起こりません。そのため、これまで原子核物理の分野ではあまり注目されていませんでした。し
かし、物性物理の分野では類似する現象が知られており、またこの現象は量子もつれ(※5)と密接に
関わっています。したがって、将来的には量子技術などを含めた分野横断的な研究が期待されます。 
本研究成果は学術誌「Physics Letters B」に2024年7月14日に掲載されました。

量子キャッチボールの新たな仕組みを解明 
—先鋭的理論で解明された3体核力と物質の安定性に関する40年以上の謎—

研究者からひとこと： 
原子核を構成する核子はフェム
トスケール(1フェムトメート
ル = 0.000000000000001メー
トル)という極微な世界の“住
人”です。“性別”を持ち(陽子と
中性子)、フィギュアスケーター
のように“自転”をしながら(スピ
ン)、規則正しく“走り回って”
います (軌道運動)。そしてこの
ような動きと同時に、複数の
ボールを使って“キャッチボー
ル”をしているのです(中間子の
交換)。とても真似できそうに
ありません。

図1. 3体核力をキャッチボールで喩えた概念図
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FIG. 6. The elastic Nd scattering differential cross section dσ
d"

at
the incoming nucleon laboratory energies E = 10, 70, 135, 190, and
250 MeV. The (red) solid lines were obtained with the SMS N4LO+

NN potential with the regularization parameter # = 450 MeV. When
that potential is supplemented with the N2LO 3NF with the strengths
of the contact terms cd = 2.0 and cE = 0.2866 (combination repro-
ducing the 3H binding energy and providing a good description of
the 70 MeV pd cross sections) predictions are displayed with the
(maroon) dotted lines. The (green) dashed lines show the results
obtained with the strengths of contact terms presented in Table III,
fixed in the multi-energy least squares fit to data at E = 10, 70, and
135 MeV (shown in Table II). The (blue) circles and (orange) squares
are 10 MeV nd data from Ref. [40] and pd data from Ref. [41],
respectively. The (blue) circles at other energies are pd data from
70 MeV [45], 135 MeV [45,47], 190 MeV [48], 250 MeV [52]. The
(orange) squares at 250 MeV are 248 MeV nd data of Ref. [51].

N3LO term in the 3NF. Therefore, the present investigation
should be repeated when this term is available.

In Figs. 6–11 we show how well the data from our basis
(the green dashed lines) are described by the 3N Hamiltonian
with fixed, in this way, strengths of contact terms. Since the
least squares fit was performed for data at the three lowest
energies, the results at 190 and 250 MeV should be consid-
ered as predictions. To assess the magnitudes of the contact
terms’ effects we show also predictions based on the NN
SMS N4LO+ potential (the red solid lines) and the results
obtained when the latter was augmented by the N2LO 3NF
with the strengths of D and E terms, cD = 2.0, cE = 0.2866,
determined from the 3H binding energy and the 70 MeV pd
cross section (the maroon dotted lines).

In nearly all cases, the fit to data improves significantly
the description of not only fitted data but also the data at the

FIG. 7. The same as in Fig. 6 but for the nucleon analyzing power
Ay. The data are from 10 MeV (blue) circles nd data [42] and (green)
squares pd data [43], 70 MeV (blue) circles pd data (at 65 MeV)
[46], 135 MeV (blue) circles pd data [49] (orange) squares pd data
[48], 190 MeV (blue) circles pd data [48], 250 MeV (blue) circles
pd data [52].

two largest energies. It is very clear, especially for the cross
section (see Fig. 6), where the discrepancy between data and
theory, found in the region of the cross-section minimum up
to the backward c.m. angles, is practically removed at 70 and
135 MeV. At 190 and 250 MeV, the inclusion of N4LO contact
terms brings the theory closer to data.

For the nucleon Ay and the deuteron vector iT11 analyzing
powers there is a significant improvement of the data descrip-
tion in the maximum of the analyzing power at 10 MeV (see
Figs. 7 and 8). That effect was also found below the deuteron
breakup threshold in Ref. [26] and supports the conclusion
of Ref. [26] that the low-energy analyzing power puzzle may
probably find its solution in the subleading N4LO 3NF con-
tact terms.

A similar picture emerges for the tensor analyzing powers
(see Figs. 9–11); here, however, at the largest energies big
discrepancies to data remain.

The large advancement in the description of the elastic
Nd scattering cross section documented in Fig. 6 at the two
largest energies prompted us to verify the situation for the
total nd scattering cross section. In Fig. 12 we show at a
few energies the SMS N4LO+ NN potential predictions (the
green circles) together with results calculated with this NN
force combined with the N2LO 3NF (blue diamonds). We
display also the total cross section data from Ref. [6] (magenta
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3H structure

Navrátil, FBS 41, 117 (2007)

We use the N3LO NN interaction of [13]. We adopt the c1, c3 and c4 LEC
values as well as the value of L from the N3LO NN interaction of [13] for our local
chiral EFT N2LO NNN interaction. The regulator function was chosen in a form
consistent with that used in [11] and [13]: Fðq2;LÞ ¼ exp½%q4=L4& (11). We note
that the momentum-space N3LO NN interaction is regulated with the nucleon
momentum cutoff, while our local chiral EFT N2LO NNN interaction is regulated
with the momentum transfer cutoff. Due to the choice of the fourth power of the
momentum (11), this inconsistency is beyond the order at which our calculations
are performed. Values of the cD and cE LECs are constrained by a fit to the A ¼ 3
system binding energy [18, 14]. Obviously, additional constraints are needed to
uniquely determine values of cD and cE, see [11, 18, 14, 39] for discussions of
different possibilities. Here we are interested only in convergence properties of our

Table 1 NNN interaction parameters used in the present calculations. The regulator

function was chosen in the form Fðq2;LÞ ¼ exp½%q4=L4&

c1 [GeV%1] c3 [GeV%1] c4 [GeV%1] cD cE

%0.81 %3.2 5.4 1.0 %0.029

L [MeV] L! [MeV] M" [MeV] gA F" [MeV]

500 700 138 1.29 92.4

Fig. 6 3H ground-state energy dependence on the size of the basis. The HO frequency of

!hO ¼ 28MeV was employed. Results with (thick lines) and without (thin lines) the NNN interaction

are shown. The full lines correspond to calculations with two-body effective interaction derived from

the chiral NN interaction, the dashed lines to calculations with the bare chiral NN interaction. For

further details see the text

Local three-nucleon interaction from chiral effective field theory 135

1 MeV 
attraction
∼
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Oxygen-drip line

Otsuka +, PRL 105, 032501 (2010)

state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
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illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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10B spectra

Navrátil +, PRL 99, 042501 (2007)

depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7

2
" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0! 1!1 0$ 10.69(84) 3.685 4.512
B#E2; 2!1 0! 1!1 0$ 4.40(2.27) 3.847 4.624
B#M1; 0!1 1! 1!1 0$ 15.43(32) 15.04(4) 15.089
B#M1; 2!1 1! 1!1 0$ 0.149(27) 0.08(2) 0.031

10B: jE#3!1 0$j [MeV] 64.751 64.78 56.11
rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0! 2!2 1$ 0.95(13) 1.22(2) 1.487

11B: jE# 3
21

" 1
2$j [MeV] 76.205 77.52 67.29

rp# 3
21

" 1
2$ [fm] 2.24(12) 2.127 2.196

Q# 3
21

" 1
2$ [e fm2] !4:065#26$ !3:065 !2:989

!# 3
21

" 1
2$ [!N] !2:689 !2:06#1$ !2:597

rms (Exp-Th) [MeV] - 1.067 1.765
B#E2; 3

21

" 1
2! 1

21

" 1
2$ 2.6(4) 1.476 0.750

B#GT; 3
21

" 1
2! 3

21

" 1
2$ 0.345(8) 0.24(1) 0.663

B#GT; 3
21

" 1
2! 1

21

" 1
2$ 0.440(22) 0.46(2) 0.841

B#GT; 3
21

" 1
2! 5

21

" 1
2$ 0.526(27) 0.53(3) 0.394

B#GT; 3
21

" 1
2! 3

22

" 1
2$ 0.525(27) 0.76(2) 0.574

12C: jE#0!1 0$j [MeV] 92.162 95.57 84.76
rp [fm] 2.35(2) 2.172 2.229
Q#2!1 0$ [e fm2] !6#3$ !4:318 !4:931
rms (Exp-Th) [MeV] - 1.058 1.318
B#E2; 2!0! 0!0$ 7.59(42) 4.252 5.483
B#M1; 1!0! 0!0$ 0.0145(21) 0.006 0.003
B#M1; 1!1! 0!0$ 0.951(20) 0.91(6) 0.353
B#E2; 2!1! 0!0$ 0.65(13) 0.45(1) 0.301

13C: jE# 1
21

" 1
2$j [MeV] 97.108 103.23 90.31

rp# 1
21

" 1
2$ [fm] 2.29(3) 2.135 2.195

!# 1
21

" 1
2$ [!N] !0:702 !0:39#3$ !0:862

rms (Exp-Th) [MeV] - 2.144 2.089
B#E2; 3

21

" 1
2! 1

21

" 1
2$ 6.4(15) 2.659 4.584
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How 3NF contributes to

shell-structure manifestation?

Microscopic origin 

remains elusive



Shell structure | Pedagogical review 

Nuclear shell structure
Magic numbers

Stable nuclei: 2, 8, 20, 28, 50, 82, 126, …

Waiting points in nucleosynthesis  
 


Phenomenologically explained  
by jj-coupling shell model

One-body spin-orbit potential

3.3 Many-Nucleon Configurations 55
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Fig. 3.5. Evolution of the neutron single-particle spectrum of 136Xe from the har-
monic oscillator spectrum to the Woods–Saxon spectrum without and with the
spin–orbit term in (3.24). The Woods–Saxon parameters are from (3.21)–(3.23) and
the additional spin–orbit parameter from (3.28). The equivalent oscillator potential
(see Fig. 3.2) has the parameters !ω = 6.53 MeV and V1 = 48.6 MeV. The parity P
of each oscillator major shell is indicated

treated separately. As can be seen from (3.33), the coupled angular momentum
states |l 1

2 j m〉 are eigenstates of L · S, i.e. the spin–orbit term is diagonal in
the coupled basis. Therefore the eigenstates φα(x) are necessarily states of
the coupled basis.

Single-particle states and single-particle energies are the foundation of the
nuclear shell model. They are needed throughout this book, so a convenient
notation is desirable. Following Baranger [31] we adopt the notation

|φα〉 ≡ |α〉 ≡ |amα〉 , a = nalaja , (3.62)

Here la and ja have their usual meanings as the quantum numbers for orbital
and total angular momenta of the orbital a, while na is the additional, energy-
related quantum number often called principal quantum number; see (3.40).
The quantity mα is the z projection of ja. The coordinate representation of
the state vector |α〉 is the wave function 〈x|α〉 = φα(x). In detail we have the
single-particle wave function

〈x|α〉 = φα(x) = ηagnala(r)
[
Yla(Ω)χ 1

2

]

jamα

, Ω = (θ,ϕ) . (3.63)

We have chosen here the radial function as the harmonic oscillator function
gnala(r) discussed in Subsect. 3.2.1. This is the usual choice in microscopic

Mayer JensenMayer Jensen

The Nobel Prize 1963The Nobel Prize 1963

The Colourful Nuclide Chart

Suhonen, “From Nucleons to Nucleus”, Springer (2007)

nobelprize.org/prizes/physics/1963
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https://people.physics.anu.edu.au/~ecs103/chart-beta/
https://www.nobelprize.org/prizes/physics/1963/summary/


Spin-orbit splitting  
     = Emergence of energy gap between spin-orbit partners of single-particle levels

:  1-body spin-orbit pot. 
(attractive)

→ Originates from nuclear force

Energy loss

Energy gain

Shell structure | Towards its microscopic origin 8
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Spin-orbit splitting | Microscopic origin remains elusive

Microscopic origins of spin-orbit coupling
26

NN LS interaction 
    σ and ω exchange 
       isoscaler in nature

3N force

Scheerbaum, Nucl. Phys. A 257 (1976) 77. 
Ando and Bando, Prog. Theor. Phys. 66 (1981) 227. 
Pieper and Pandharipande, Phys. Rev. Lett. 70 (1993) 2541. 

Tensor force

“Spin-orbit coupling in heavy nuclei” 
Fujita and Miyazawa, PTP 17 (1957) 366.

Wigner & Feingold, PR 79 (1950) 221. 
Terasawa, PTP 23 (1960) 87.

Microscopic origin 
→ Particularly 3NFNOT fully  

understood

Uesaka, EPJ Plus 131, 403 (2016)

cf. Fujita & Miyazawa, PTP 17, 366 (1957) 
     Andō & Bandō, PTP 66, 227 (1981) 
     Kohno, PRC 86, 061301(R) (2012)
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1950’s

Pion theories

1960’s

1-boson exchange

1970’s

Diverse 2-pion  
exchange

1980’s

QCD

1990’s and beyond

EFT 
Chiral Symmetry

Yukawa:  
Meson theory

1935

“the circle of history is closing”
Machleidt & Entem, PR 503, 1 (2011)

Spin-orbit splitting & 3NF | Opportune moment to tackle the problem 10



Chiral EFT | State-of-the-art theory

Chiral EFT
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in , , and waves and mixing parameters

Neutron-proton scattering phase shifts

Entem +, PRC 96, 024004 (2017)
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Chiral EFT

beyond which we plot only the data locating on the coor-
dinate axes and their nearest neighbors. As is clear from
Fig. 2, the wave function is suppressed at short distance
and has a slight enhancement at medium distance, which
suggests that the NN system has a repulsion (attraction) at
short (medium) distance.

Figure 3 shows the central (effective central) NN poten-
tial in the 1S0 (3S1) channel at t! t0 " 6. As for r2 in
Eq. (2), we take the discrete form of the Laplacian with the
nearest-neighbor points. E is obtained from the Green’s
function G# ~r;E$ which is a solution of the Helmholtz
equation on the lattice [9]. By fitting the wave function
!#~r$ at the points ~r " #10–16; 0; 0$ and #10–16; 1; 0$ by
G#~r;E$, we obtain E#1S0$"!0:49#15$MeV and E#3S1$ "

!0:67#18$ MeV. Namely, there is a slight attraction be-
tween the two nucleons in a finite box. To make an inde-
pendent check of the ground state saturation, we plot the t
dependence of VC#r$ in the 1S0 channel at several distances
r " 0, 0.14, 0.19, 0.69, 1.37, and 2.19 fm in Fig. 4. The
saturation indeed holds for t! t0 % 6 within errors.

As anticipated from Fig. 2, VC#r$ and Veff
C #r$ have

repulsive core at r & 0:5 fm with the height of about a
few hundred MeV. Also, they have an attraction of about
!#20–30$ MeV at the distance 0:5 & r & 1:0 fm. The
solid lines in Fig. 3 show the one-pion exchange contribu-
tion to the central potential calculated from

 V"C #r$ "
g2
"N

4"
# ~#1 & ~#2$# ~$1 & ~$2$

3

!
m"

2mN

"
2 e!m"r

r
; (5)

where we have used m" ’ 0:53 GeV and mN ’ 1:34 GeV
to be consistent with our data, while the physical value of
the "N coupling constant is used, g2

"N=#4"$ ’ 14:0. Even
in the quenched approximation, the one-pion exchange is
possible as the connected quark exchange between the two
nucleons. In addition, there is in principle a quenched
artifact to the NN potential from the flavor-singlet hairpin
diagram (the ghost exchange) between the nucleons [13].
Its contribution to the central potential reads [14]: V%C #r$ "
g2
%N

4"
~$1& ~$2

3 # m"
2mN
$2#1r!

m2
0

2m"
$e!m"r. Here g%N and m0 are the

%N coupling constant and a mass parameter of the ghost,
respectively. The ghost potential has an exponential tail
which dominates over the Yukawa potential at large dis-
tances. Its significance can be estimated by comparing the
sign and the magnitude of em"rVC#r$ and em"rVeff

C #r$ at
large distances, because V%C #r$ has an opposite sign be-
tween 1S0 and 3S1. Our present data show no evidence of
the ghost at large distances within errors, which may
indicate g%N ' g"N .

Several comments are in order here. (1) The asymptotic
wave function at low energy (E! 0) is approximated as
!asy#r$" sin(kr)&0#k$*

kr ! r)a0
r , where &0#k$ (a0) is the s-wave
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FIG. 2 (color online). The lattice QCD result of the radial
dependence of the NN wave function at t! t0 " 6 in the 1S0
and 3S1 channels. Inset shows the two-dimensional view in the
x! y plane.
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change potential (OPEP) given in Eq. (5).
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Lattice QCD

Future

Only a few parameters, 
but low precision currently
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Hierarchical structure

Realistic force (  ) 

Consistent many-body forces

χ2 ∼ 1

HIGH-QUALITY TWO-NUCLEON POTENTIALS UP TO . . . PHYSICAL REVIEW C 96, 024004 (2017)
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the

024004-3
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Fig. 2. Neutron effective single-particle energies in the oxygen chain. The red solid 
and blue dot-dash curves are for the calculations with and without 3NF, respec-
tively. The numbers of N = 14, 16 indicate the neutron sub-shell closures.

In the inset of Fig. 1, we dissect the 3NF effect in 24−26O, where 
the 3NF effects are significant. The two-pion exchange V (2π)

3N and 
the contact term V (ct)

3N supply repulsive contributions to the bind-
ing energy, indicated by bars above the 2NF GSM energy, while 
the one-pion exchange plus contact term V (1π)

3N produces an attrac-
tive contribution, displayed by a bar below the 2NF GSM energy. 
We also see that, besides the two-pion exchange V (2π)

3N which 
corresponds to the long-range 3NF interaction, the one-pion ex-
change and contact terms also have non-negligible contributions. 
The V (1π)

3N and V (ct)
3N contributions are very close in absolute value 

but opposite in signs. Consequently, their net effect is almost can-
celed out, implying that the two-pion exchange is responsible for 
the 3NF strong repulsive effect. As can be seen in the inset of 
Fig. 1, the role of the two-pion exchange becomes more impor-
tant when increasing the neutron number, while the contributions 
from the one-pion exchange and contact components are almost 
unchanged.

The GSM can describe both bound and unbound states on equal 
footing. Fig. 3 displays the calculated spectra of the neutron-rich 
bound isotopes 21−23O. We see that 3NF improves agreements 
with experimental data. The N = 14 sub-shell closure at 22O is 
clearly seen with a large excitation energy of the 2+

1 state.
Our interests are in weakly-bound and unbound nuclei. Fig. 4

shows the spectroscopic calculations with and without the 3NF ef-
fects, compared with existing experimental observations, for the 
oxygen isotopes near the neutron dripline. In 24O, the observed 
resonant excited 2+

1 and 1+
1 states are reproduced, and the 3NF 

improves the calculations in both the excitation energies and res-
onance widths. In 25O, the GSM calculation with the N3LO 2NF 
gives over-bound binding energy, while the inclusion of the N2LO 
3NF describes well the unbound resonant property of the ground 
state with the resonance width agreeing well with the experimen-
tal measurement. A new excited state with a possible configuration 
of Jπ = 1/2+ was reported recently in the experiment [2]. The 
present calculations support the experimental suggestion.

As discussed above, the GSM calculation with 3NF can well de-
scribe the ground state of the observed unbound 26O beyond the 
dripline. As regards the unbound 26O, in a recent experimental 
work, a (2+) state has been observed at an excitation energy of 
1.28 MeV, while the experimental resolution has not been able to 
establish the resonance widths. Our results with 3NF provide, be-
sides an unbound ground state with a resonance width of 15 keV, a 

Fig. 3. Calculated spectra for 21−23O by the GSM with 2NF (NN) only and with 3NF 
included (NN+3N), compared with available data [33–36]. The resonant state is in-
dicated by shading, with the resonance width (in MeV) given by the number above 
the level.

Fig. 4. Similar to Fig. 3, but for 24−26O. The experimental data are taken from [37,2,
38,1].

2+ state that is lower in energy than the observed one and whose 
resonance width is 97 keV. We also predict a second 2+ state at 
∼ 4 MeV with a width of 33 keV. It should be mentioned that 
26O has been calculated in the framework of GSM by using a phe-
nomenological two-body residual interaction [39]. The results in 
Ref. [39] predicts a barely bound ground state and a 2+

1 state at 
Ex ≈ 1.08 MeV with a resonance width of ∼ 27 keV. Therefore, it 
is worth pointing out that the above results evidence that the in-
terplay between continuum and 3NF effects reveals itself crucial to 
reproduce the oxygen dripline correctly.

4. Conclusions

In conclusion, we have been successful in extending the chiral 
N2LO three-body interaction to the complex-momentum Berggren 
space in which the resonance and continuum are included. To re-
duce the computation task, the 3NF is normal-ordered. With the 
chiral N3LO 2NF and N2LO 3NF, we have performed the Gamow 
shell-model calculations for neutron-rich oxygen isotopes as the 
test ground. The calculations with the inclusions of both 3NF and 
continuum reproduce the dripline position and the unbound prop-
erties of the nuclei beyond the dripline. The present calculations 
explain well the experimental resonance widths of the 24O excited 
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e.g.) Oxygen isotopes
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4 Y.Z. Ma et al. / Physics Letters B 802 (2020) 135257

Fig. 2. Neutron effective single-particle energies in the oxygen chain. The red solid 
and blue dot-dash curves are for the calculations with and without 3NF, respec-
tively. The numbers of N = 14, 16 indicate the neutron sub-shell closures.

In the inset of Fig. 1, we dissect the 3NF effect in 24−26O, where 
the 3NF effects are significant. The two-pion exchange V (2π)

3N and 
the contact term V (ct)

3N supply repulsive contributions to the bind-
ing energy, indicated by bars above the 2NF GSM energy, while 
the one-pion exchange plus contact term V (1π)

3N produces an attrac-
tive contribution, displayed by a bar below the 2NF GSM energy. 
We also see that, besides the two-pion exchange V (2π)

3N which 
corresponds to the long-range 3NF interaction, the one-pion ex-
change and contact terms also have non-negligible contributions. 
The V (1π)

3N and V (ct)
3N contributions are very close in absolute value 

but opposite in signs. Consequently, their net effect is almost can-
celed out, implying that the two-pion exchange is responsible for 
the 3NF strong repulsive effect. As can be seen in the inset of 
Fig. 1, the role of the two-pion exchange becomes more impor-
tant when increasing the neutron number, while the contributions 
from the one-pion exchange and contact components are almost 
unchanged.

The GSM can describe both bound and unbound states on equal 
footing. Fig. 3 displays the calculated spectra of the neutron-rich 
bound isotopes 21−23O. We see that 3NF improves agreements 
with experimental data. The N = 14 sub-shell closure at 22O is 
clearly seen with a large excitation energy of the 2+

1 state.
Our interests are in weakly-bound and unbound nuclei. Fig. 4

shows the spectroscopic calculations with and without the 3NF ef-
fects, compared with existing experimental observations, for the 
oxygen isotopes near the neutron dripline. In 24O, the observed 
resonant excited 2+

1 and 1+
1 states are reproduced, and the 3NF 

improves the calculations in both the excitation energies and res-
onance widths. In 25O, the GSM calculation with the N3LO 2NF 
gives over-bound binding energy, while the inclusion of the N2LO 
3NF describes well the unbound resonant property of the ground 
state with the resonance width agreeing well with the experimen-
tal measurement. A new excited state with a possible configuration 
of Jπ = 1/2+ was reported recently in the experiment [2]. The 
present calculations support the experimental suggestion.

As discussed above, the GSM calculation with 3NF can well de-
scribe the ground state of the observed unbound 26O beyond the 
dripline. As regards the unbound 26O, in a recent experimental 
work, a (2+) state has been observed at an excitation energy of 
1.28 MeV, while the experimental resolution has not been able to 
establish the resonance widths. Our results with 3NF provide, be-
sides an unbound ground state with a resonance width of 15 keV, a 

Fig. 3. Calculated spectra for 21−23O by the GSM with 2NF (NN) only and with 3NF 
included (NN+3N), compared with available data [33–36]. The resonant state is in-
dicated by shading, with the resonance width (in MeV) given by the number above 
the level.

Fig. 4. Similar to Fig. 3, but for 24−26O. The experimental data are taken from [37,2,
38,1].

2+ state that is lower in energy than the observed one and whose 
resonance width is 97 keV. We also predict a second 2+ state at 
∼ 4 MeV with a width of 33 keV. It should be mentioned that 
26O has been calculated in the framework of GSM by using a phe-
nomenological two-body residual interaction [39]. The results in 
Ref. [39] predicts a barely bound ground state and a 2+

1 state at 
Ex ≈ 1.08 MeV with a resonance width of ∼ 27 keV. Therefore, it 
is worth pointing out that the above results evidence that the in-
terplay between continuum and 3NF effects reveals itself crucial to 
reproduce the oxygen dripline correctly.

4. Conclusions

In conclusion, we have been successful in extending the chiral 
N2LO three-body interaction to the complex-momentum Berggren 
space in which the resonance and continuum are included. To re-
duce the computation task, the 3NF is normal-ordered. With the 
chiral N3LO 2NF and N2LO 3NF, we have performed the Gamow 
shell-model calculations for neutron-rich oxygen isotopes as the 
test ground. The calculations with the inclusions of both 3NF and 
continuum reproduce the dripline position and the unbound prop-
erties of the nuclei beyond the dripline. The present calculations 
explain well the experimental resonance widths of the 24O excited 
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).
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Shell-model results | Spectra of 13N and 13C 23

 energies: Enhanced by noncentral 3NF


Rank-1: Dominant contribution 


Experimental : Not perfectly consistent w/ calc.
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Spin-orbit splitting and 3NF | Single-particle energies

0.0

2.0

4.0

6.0

8.0

10.0

No 3NF � = 0 � = 0, 1 � = 0–2 � = 0–3

✏ i
(M

eV
)

(a) Proton SPE

0.0

2.0

4.0

6.0

8.0

10.0

0p3/2

0p1/2

3.1
3.1 4.5 4.8 4.9

No 3NF � = 0 � = 0, 1 � = 0–2 � = 0–3

(b) Neutron SPE

0p3/2

0p1/2

3.7
3.6 5.1 5.3 5.4

40—60% increase by whole 3NF


Rnak-1:  90% contribution

∼

≳

24

Fukui +, PLB 855, 138839 (2024)



Shell-model results | Effective single-particle energies

Evolution of ESPEs (N = Z nuclei)

Whole 3NF: Doubling SO splitting (12C) ∼
15N-SO splitting: Half from 3NF 

(Urbana-VII 3NF)

Pieper & Pandharipande, PRL 70, 2541 (1993) 
Schiavilla +, NPA 449, 219 (1986)

Pieper & Pandharipande

Consistent
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Evolution of ESPEs (N = Z nuclei)

Whole 3NF: Doubling SO splitting (12C) 


Rnak-1: 75% contribution (8Be, 12C)


Rank-2: 20% contribution (8Be, 12C)

∼

∼

∼

26Shell-model results | Effective single-particle energies

Fukui +, PLB 855, 138839 (2024)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

�
✏̃
(
M
e
V
) (a) Proton

No 3NF � = 0 � = 0, 1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

�
✏̃
(
M
e
V
) (a) Proton

� = 0–2 � = 0–3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

10.0

4
He

8
Be

12
C

�
✏̃
(
M
e
V
)

(b) Neutron

0.0

2.0

4.0

6.0

8.0

10.0

4
He

8
Be

12
C

0.0

2.0

4.0

6.0

8.0

10.0

12.0

�
✏̃
(
M
e
V
) (a) Proton

No 3NF � = 0 � = 0, 1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

�
✏̃
(
M
e
V
) (a) Proton

� = 0–2 � = 0–3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

10.0

4
He

8
Be

12
C

�
✏̃
(
M
e
V
)

(b) Neutron

0.0

2.0

4.0

6.0

8.0

10.0

4
He

8
Be

12
C

0.0

2.0

4.0

6.0

8.0

10.0

12.0

�
✏̃
(
M
e
V
) (a) Proton

No 3NF � = 0 � = 0, 1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

�
✏̃
(
M
e
V
) (a) Proton

� = 0–2 � = 0–3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

10.0

4
He

8
Be

12
C

�
✏̃
(
M
e
V
)

(b) Neutron

0.0

2.0

4.0

6.0

8.0

10.0

4
He

8
Be

12
C

0p1/2

0p3/2

15N-SO splitting: Half from 3NF 
(Urbana-VII 3NF)

Pieper & Pandharipande, PRL 70, 2541 (1993) 
Schiavilla +, NPA 449, 219 (1986)

Pieper & Pandharipande

Consistent



2𝝅-exchange dominance | Rank-1 component exclusively from 2𝝅 27

2𝝅-exchange dominance 

also for SO splitting

Our finding:
Dominant in SO splitting

Rank 0
(scalar)

Rank 1
(vector)

Rank 2
(tensor)

Rank 3



Our finding:
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Our conclusions: 

Probably independent of contact LECs

—  LECs: 

Well constrained 


by Roy-Steiner equation analysis

π N

Hoferichter +, PRL 115, 192301 (2015)
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2𝝅-exchange dominance | Fujita-Miyazawa 3NF

Lower-order contribution
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Extended Data Fig. 4 | Ground-state expectation value of the 3NF for the Ne 
and Mg isotopes. a, Ne; b, Mg. For each isotope, the second (orange), third 
(green) and fourth (red) columns depict, respectively, this quantity obtained 
with the 3NF of Gazit et al.80, that of Hebeler et al.77 and that of Hebeler et al. 

with single-particle energy shift (labelled ‘Hebeler et al.−0.5N ’) (Methods). For 
comparison, the same quantity by the Fujita–Miyazawa 3NF is shown by the 
first (blue) column.

Fujita & Miyazawa, PTP 17, 360 (1957) 
Machleidt & Entem, PR 503, 1 (2011)

46 R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75

Fig. 24. The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s are added to the theory. Note that
the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines represent �-isobars; remaining notation as in Fig. 1.

contributions due to intermediate �-excitations, expanded in powers of 1/�M , can be absorbed into a redefinition of the
LECs of the �-less theory. The corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
p
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the � resonance.

The studies of Refs. [56,221] confirm that a large amount of the intermediate-range attraction of the 2NF is shifted from
NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that the NNLO 2PE potential of the
�-less theory provides a very good approximation to the NNLO potential in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO. In the �-full theory,
this term has the same mathematical form as the corresponding term in the �-less theory, Eqs. (5.2) and (5.3), provided
one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the other two NLO 3NF terms involving �’s vanish [222]
as a consequence of the antisymmetrization of the 3N states. The � contributions to the 3NF at NNLO [222] vanish at
this order, because the subleading N�⇡ vertex contains a time-derivative, which demotes the contributions by one order.
However, substantial 3NF contributions are expected at N3LO from one-loop diagrams with one, two, or three intermediate
�-excitations, which correspond to diagrams of order N4LO, N5LO, and N6LO, respectively, in the �-less theory. 3NF loop
diagrams with one and two �’s are included in the Illinois force [224] in a simplified way.

To summarize, the inclusion of explicit � degrees of freedom does certainly improve the convergence of the chiral
expansion by shifting sizable contributions from NNLO to NLO. On the other hand, at NNLO the results for the �-full and
�-less theory are essentially the same. Note that the �-full theory consists of the diagrams involving �’s plus all diagrams
of the �-less theory. Thus, the �-full theory is much more involved. Moreover, in the �-full theory, 1/MN 2NF corrections
appear at NNLO (not shown in Fig. 23), which were found to be uncomfortably large by Kaiser et al. [56]. Thus, it appears
that up to NNLO, the �-less theory is more manageable.

The situation could, however, change at N3LO where potentially large contributions enter the picture. It may be more
efficient to calculate these terms in the �-full theory, because in the �-less theory they are spread out over N3LO, N4LO
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One-body SO potential from rank-1 3NF

Rank-1 3NF solely 
(Fujita—Miyazawa 3NF/Tucson—Melbourne 3NF)

Fujita & Miyazawa, PTP 17, 360 (1957) 
Coon, NPA 317, 242 (1979)

Andō & Bandō
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One-body SO potential from rank-1 3NF
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Antisymmetric-SO 3NF!
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Spin canting of magnetic ions by 

Dzyaloshinsky—Moriya interaction

Dzyaloshinsky, JPCS 4, 241 (1958) 
Moriya, PRL 4, 228 (1960) 
Moriya, PR 120, 91 (1960)
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Heavier nuclei: 
Rank-2 3NF becomes relevant? 

2n correlation, entanglement, 
and 3NF

FutureMain finding

Our finding:
Dominant in SO splitting

Rank 0
(scalar)

Rank 1
(vector)

Rank 2
(tensor)

Rank 3

Singlet-triplet mixing & antisym. 3NF
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Chiral EFT + Shell model
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Leading three-baryon forces are derived within SU(3) chiral effective field theory. Three classes of irreducible
diagrams contribute: three-baryon contact terms, one-meson exchange, and two-meson exchange diagrams. We
provide the minimal nonrelativistic terms of the chiral Lagrangian that contribute to these diagrams. SU(3)
relations are given for the strangeness S = 0 and −1 sectors. In the strangeness-zero sector we recover the
well-known three-nucleon forces from chiral effective field theory. Explicit expressions for the !NN chiral
potential in isospin space are presented.
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I. INTRODUCTION

Solving nuclear few- and many-body problems based on
microscopic interactions has been a continuous challenge in
nuclear physics. Nowadays the nucleon-nucleon (NN ) inter-
action can be treated to high accuracy using phenomenological
models [1–3] or potentials derived from chiral effective field
theory (χEFT) [4,5]. However, few-body systems such as
the triton cannot be described satisfactorily with two-body
forces only. Substantial improvements result from the con-
sideration of three-nucleon forces (3NFs) [6,7]. These 3NFs
are introduced either phenomenologically, such as the families
of Tuscon-Melbourne [8,9], Brazilian [10], or Urbana-Illinois
[11,12] 3NFs, or deduced from more basic principles using
χEFT [7,13–21]. Effective field theory approaches have the
advantage that 3NFs can be derived consistently with the
underlying NN interaction and that theoretical error estimates
are possible.

The situation in strangeness nuclear physics is less clear.
Owing to the lack of high-precision experimental data, the
hyperon-nucleon (YN ) interaction cannot be sufficiently well
constrained. Different models describe the empirical scattering
data equivalently [22–25], but differ considerably from each
other. Nonetheless, three-baryon forces (3BFs), in particular
a repulsive !NN interaction, appear to be essential for the
description of hypernuclei and hypernuclear matter [26–34].
Empirical facts about dense neutron-star matter favor such
considerations. The recent observation of two-solar-mass
neutron stars [35,36] sets strong stiffness constraints for the
equation of state (EoS) of dense baryonic matter [37–39]. A
naive introduction of ! hyperons as an additional baryonic
degree of freedom in neutron-star matter would soften the
EoS [40] such that it is not possible to stabilize two-solar-mass
neutron stars against gravitational collapse. The introduction
of strongly repulsive YNN forces is one possible suggestion
to improve the situation [41–43].

So far, baryonic three-body forces involving hyperons
have been investigated only by employing phenomenological

*stefan.petschauer@ph.tum.de

interactions, and a more systematic approach is desirable.
Chiral effective field theory is an appropriate tool for such
considerations. It exploits the symmetries of quantum chro-
modynamics together with the appropriate low-energy degrees
of freedom. The description of the low-energy interaction of
hadrons can be improved systematically by going to higher or-
der in the power counting in small momenta. Furthermore, the
hierarchy of baryonic forces, from long-range to intermediate-
and short-range interactions, emerges naturally within this
framework. Two- and three-baryon forces can be described
in a consistent way.

Recently, the YN interaction has been studied up to next-to-
leading order (NLO) in χEFT. The YN scattering data [25], as
well as the self-energies of hyperons in nuclear matter [44,45],
can be well described within this framework. The irreducible
chiral 3BFs appear formally at next-to-next-to-leading order
(NNLO) [4]. However, e.g., the low-energy constants of
the 3NFs at NNLO are unnaturally large and cause effects
comparable to those one would expect at the NLO level. These
large values are connected with the excitation of the low-lying
#(1232) resonance and can be understood in terms of the
so-called resonance saturation. Indeed, the inclusion of the
# isobar as an explicit degree of freedom in EFT promotes
parts of the 3NFs to NLO [4,46]. In systems with strangeness
S = −1, resonances such as the $∗(1385) could play a similar
role as the # in the NNN system. It is therefore likewise
compelling to treat their effects in 3BFs together with the
NLO YN interaction.

In the standard power counting scheme of the baryonic
forces in χEFT (cf. Refs. [4,5]) the chiral dimension ν of a
given Feynman diagram is determined by

ν = − 4 + 2B + 2L +
∑

i

vi#i ,

#i = di + 1
2
bi − 2, (1)

where B is the number of external baryons and L the number
of Goldstone boson loops. The number of vertices with vertex
dimension #i ! 0 is denoted by vi . The symbol di stands
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