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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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parity conservation which forbids !N̄N"!N̄N" vertices
with one spatial derivative and !NN vertices with two
derivatives !i.e., "i=1". The next-to-leading-order
!NLO" contributions to the 2NF therefore result from
tree diagrams with one insertion of the "i=2 interaction
and one-loop diagrams constructed from the lowest-
order vertices !see Fig. 12". The relevant terms in the
effective Lagrangian read !Gasser et al., 1988"

L!
!2" =

l3

16
##+$2 +

l4

16
%2#!$U!$U†$##+$

+ 2##†U#†U + #U†#U†$ − 4##†#$ − ##−$2&

+ ¯ ,

L!N
!2" = N̄' 1

2m̊
!v · D"2 −

1
2m̊

D · D + d16S · u##+$

+ id18S$%D$,#−& + ¯ (N ,

LNN
!2" = − C̃1)!N̄DN" · !N̄DN" + %!DN̄"N& · %!DN̄"N&*

− 2!C̃1 + C̃2"!N̄DN" · %!DN̄"N&

− C̃2!N̄N" · %!D2N̄"N + N̄D2N& + ¯ , !2.12"

where li, di, and C̃i denote further LECs and m̊ is
the nucleon mass in the chiral limit. The ellipses in
the pion and pion-nucleon Lagrangians refer to terms
which do not contribute to the nuclear force at NLO.
In the case of the nucleon-nucleon Lagrangian LNN

!2"

only a few terms are given explicitly. The complete
reparametrization-invariant set of terms can be found in
Epelbaum !2000". The NLO contributions to the two-
nucleon potential have been first considered in Ordonez
et al. !1994, 1996" utilizing the framework of time-
ordered perturbation theory. The corresponding energy-
independent expressions have been worked out in Friar
and Coon !1994" using the method described in Friar
!1977" and then rederived in Kaiser et al. !1997" using an
S-matrix-based approach and, independently, in Epel-
baum et al. !1998b, 2000" based on the method of unitary
transformation. The one-pion !1!" exchange diagrams
at NLO do not produce any new momentum depen-
dence. Apart from renormalization of various LECs in
Eq. !2.11", one obtains the leading contribution to the
Goldberger-Treiman discrepancy !Epelbaum et al.,
2003",

g!N

m
=

gA

F!

−
2M!

2

F!

d18 + ¯ , !2.13"

where the ellipsis refers to higher-order terms. Similarly,
loop diagrams involving NN short-range interactions
only lead to !M!-dependent" shifts in the LO contact
terms. The remaining contributions to the 2NF due to
higher-order contact interactions and two-pion exchange
have the form

VNN
!2" = −

!1 · !2

384!2F!
4 L%̃!q"'4M!

2 !5gA
4 − 4gA

2 − 1"

+ q!2!23gA
4 − 10gA

2 − 1" +
48gA

4 M!
4

4M!
2 + q!2(

−
3gA

4

64!2F!
4 L%̃!q"!&! 1 · q!&! 2 · q! − &! 1 · &! 2q!2"

+ C1q!2 + C2k!2 + !C3q!2 + C4k!2"&! 1 · &! 2

+ iC5
1
2

!&! 1 + &! 2" · q! ' k! + C6q! · &! 1q! · &! 2

+ C7k! · &! 1k! · &! 2, !2.14"

where q+,q! , and the LECs Ci can be written as linear
combinations of C̃i in Eq. !2.12". The loop function
L%̃!q" is defined in the spectral function regularization
!Epelbaum et al., 2004a, 2004b" as

L%̃!q" = (!%̃ − 2M!"
)

2q
ln

%̃2)2 + q2s2 + 2%̃q)s

4M!
2 !%̃2 + q2"

,

!2.15"

where we have introduced the following abbreviations:

)=-4M!
2 +q!2 and s=-%̃2−4M!

2 . Here %̃ denotes the ul-
traviolet cutoff in the mass spectrum of the two-pion-
exchange potential. If dimensional regularization !DR"
is employed, the expression for the loop function simpli-
fies to

L!q" = lim
%̃→*

L%̃!q" =
)

q
ln

) + q
2M!

. !2.16"

In addition to the two-nucleon contributions, at NLO
one also needs to consider three-nucleon diagrams
shown in the first line of Fig. 13. The first diagram does
not involve reducible topologies and, therefore, can be
dealt with using the Feynman graph technique. It is then
easy to verify that its contribution is shifted to higher
orders due to the additional suppression by the factor of
1/m caused by the appearance of time derivative at the
leading-order !!N̄N vertex, the so-called Weinberg-
Tomozawa vertex. The two remaining diagrams have
been considered in Weinberg !1990, 1991" and later in
Ordonez and van Kolck !1992" using the energy-
dependent formulation based on time-ordered perturba-
tion theory. In this approach, it was shown that the re-
sulting 3NF cancels exactly !at the order one is working"
against the recoil correction to the 2NF when the latter
is iterated in the dynamical equation. In energy-
independent approaches—such as, e.g., the method of
unitary transformation—which are employed in most of
the existing few-nucleon calculations one observes that
the irreducible contributions from the last two diagrams
in the first line of Fig. 13 are suppressed by the factor
1/m and thus occur at higher orders !Epelbaum, 2000"
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
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2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −
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2

4F"
2

&! 1 · q!&! 2 · q!
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2 "1 · "2 + CS + CT&! 1 · &! 2,
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where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to
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FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.

1786 Epelbaum, Hammer, and Meißner: Modern theory of nuclear forces

Rev. Mod. Phys., Vol. 81, No. 4, October–December 2009

the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
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component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,
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" · ! −
1

2F2!2 + O""3# , "2.10#
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tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:
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&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to
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FIG. 12. Chiral expansion of the two-nucleon force up to next-
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ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
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ing the amplitude to the iterated Lippmann-Schwinger
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:
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4
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where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
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the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
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panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
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&i are the Pauli spin matrices, q! =p! −p! is the nucleon
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
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component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
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tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
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the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"
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2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
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where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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The first corrections to the LO result are suppressed
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of the contributions at order '=1 can be traced back to
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
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component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
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space collects the pion fields,
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D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"
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2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
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pion exchange and the contact one "see the first line in
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where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
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component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,
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derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
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&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
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component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,
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D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
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tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
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&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
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and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
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derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
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the pion-nucleon Lagrangian including up to four
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of the pion fields one can easily verify that the only pos-
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and gA=1.267 denote the pion decay and the nucleon
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
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velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
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ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
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tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
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2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
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pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.
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brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
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D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
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2 =2Bmq+O"mq
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tails on the notation and the complete expressions for
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panding the effective Lagrangian in Eqs. "2.9# in powers
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where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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of the contributions at order '=1 can be traced back to
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
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component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
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space collects the pion fields,
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derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
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2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
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&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
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where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
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space collects the pion fields,
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D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"
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2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
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where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
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derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
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and g!A refer to the chiral-limit values of the pion decay
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-
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and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.

1786 Epelbaum, Hammer, and Meißner: Modern theory of nuclear forces

Rev. Mod. Phys., Vol. 81, No. 4, October–December 2009

Nucleon field
Pion field
Nucleon four-velocity
Covariant spin vector

Pion decay constant

the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the

024004-3
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Fig. 24. The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s are added to the theory. Note that
the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines represent �-isobars; remaining notation as in Fig. 1.

contributions due to intermediate �-excitations, expanded in powers of 1/�M , can be absorbed into a redefinition of the
LECs of the �-less theory. The corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
p
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the � resonance.

The studies of Refs. [56,221] confirm that a large amount of the intermediate-range attraction of the 2NF is shifted from
NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that the NNLO 2PE potential of the
�-less theory provides a very good approximation to the NNLO potential in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO. In the �-full theory,
this term has the same mathematical form as the corresponding term in the �-less theory, Eqs. (5.2) and (5.3), provided
one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the other two NLO 3NF terms involving �’s vanish [222]
as a consequence of the antisymmetrization of the 3N states. The � contributions to the 3NF at NNLO [222] vanish at
this order, because the subleading N�⇡ vertex contains a time-derivative, which demotes the contributions by one order.
However, substantial 3NF contributions are expected at N3LO from one-loop diagrams with one, two, or three intermediate
�-excitations, which correspond to diagrams of order N4LO, N5LO, and N6LO, respectively, in the �-less theory. 3NF loop
diagrams with one and two �’s are included in the Illinois force [224] in a simplified way.

To summarize, the inclusion of explicit � degrees of freedom does certainly improve the convergence of the chiral
expansion by shifting sizable contributions from NNLO to NLO. On the other hand, at NNLO the results for the �-full and
�-less theory are essentially the same. Note that the �-full theory consists of the diagrams involving �’s plus all diagrams
of the �-less theory. Thus, the �-full theory is much more involved. Moreover, in the �-full theory, 1/MN 2NF corrections
appear at NNLO (not shown in Fig. 23), which were found to be uncomfortably large by Kaiser et al. [56]. Thus, it appears
that up to NNLO, the �-less theory is more manageable.

The situation could, however, change at N3LO where potentially large contributions enter the picture. It may be more
efficient to calculate these terms in the �-full theory, because in the �-less theory they are spread out over N3LO, N4LO

Machleidt & Entem, PR 503, 1 (2011)R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75 45

Fig. 23. Chiral 2NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s are added to the theory. Note
that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines represent �-isobars; remaining notation as in Fig. 1.

known as resonance saturation [219]. Therefore, the explicit inclusion of the � (‘‘�-full’’ theory) will take strength out of
these LECs and move this strength to a lower order [53,56,220–222]. As a consequence, the convergence of the expansion
improves,which is anothermotivation for introducing explicit�-degrees of freedom.Weobserved that, in the�-less theory,
the subleading 2PE and 3PE contributions to the 2NF are larger than the leading ones. The promotion of large contributions
by one order in the �-full theory fixes this problem.

In the heavy baryon formalism, the leading Lagrangian involving �’s reads [54,70] (listing only terms relevant to our
present discussion)

✓L�i=0
� = �̄(i⇡0 ⇤ �M)� ⇤ hA

2f�

◆
N̄T⌘S� + h.c.

⇣
· ⇠� ⇤ DT N̄⇢ ⌘�N ·

◆
N̄T⌘S� + h.c.

⇣
, (6.1)

where � is a four-component spinor in both spin and isospin space representing the �-isobar and hA and DT are LECs.5
Moreover, Si are 2!4 spin transitionmatriceswhich satisfy SiSjÑ = (2@ij⇤i⇤ ijk� k)/3 and Ta are similar isospinmatriceswith
TaT bÑ = (2@ab ⇤ i⇤abc� c)/3. Notice that, due to the heavy baryon expansion, the mass of the �-isobar,M�, has disappeared
and only the small mass difference �M enters.

The LECs of the�N Lagrangian are usually extracted in the analysis of�–N scattering data and clearly comeout differently
in the �-full theory as compared to the �-less one. While in the �-less theory, the magnitude of the LECs c3 and c4 is about
3–5 GeV⇤1 (cf. Table 2), they turn out to be around 1 GeV⇤1 in the �-full theory [221].

In the 2NF, the virtual excitation of �-isobars requires at least one loop and, thus, the contribution occurs first at ⇢ = 2
(NLO), see Fig. 23. The � contributions to the 2PE were first evaluated in Refs. [53,54,220] using time-ordered perturbation
theory and later by Kaiser et al. [56] in covariant perturbation theory. Recently, also the NNLO contributions have been
worked out [221]. Krebs et al. [221] verified the consistency between the �-full and �-less theories by showing that the

5 Our convention for hA is consistent with Refs. [54,56,70,107] and differs by a factor of two from Refs. [218,221,223].

2NF 3NF
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the

024004-3
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the

024004-3

Central + SO + Tensor



N3LO potential
Machleidt & Entem, PR 503, 1 (2011)

HIGH-QUALITY TWO-NUCLEON POTENTIALS UP TO . . . PHYSICAL REVIEW C 96, 024004 (2017)

+... +... +...

+... +... +...

+... +... +... +...

2N Force 3N Force 4N Force 5N Force

LO
(Q/Λχ)0

NLO
(Q/Λχ)2

NNLO
(Q/Λχ)3

N3LO
(Q/Λχ)4

N4LO
(Q/Λχ)5

N5LO
(Q/Λχ)6

FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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Fig. 8. F-wavephase shifts of neutron–proton scattering for laboratory kinetic energies below300MeV.We show thepredictions fromchiral pion exchange
to leading order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO), and next-to-next-to-next-to-leading order (N3LO). Note that in
3F4, the NNLO and N3LO curves cannot be distinguished on the scale of the figure. The solid dots and open circles are the results from the Nijmegen
multi-energy np phase shift analysis [139] and the VPI/GWU single-energy np analysis SM99 [140], respectively.

order contributions from V (KBW,np)
2⇡ ,it will not affect the accuracy we are working at. The most important term in the above

equation is V 0
2⇡ , the irreducible 2PE contributions, for which we have the low-momentum expansion,

V 0
2⇡ = V 0(2)

2⇡ + V 0(3)
2⇡ + V 0(4)

2⇡ + · · · , (4.31)

with the various V 0(⌫)
2⇡ given in Section 4.1.2. In the calculation of V 0

2⇡ , we use the average pion mass m⇡ = 138.039 MeV
and, thus, neglect the charge dependence due to pion-mass splitting in irreducible diagrams. The charge dependence that
emerges from irreducible 2⇡ exchangewas investigated in Ref. [137] and found to be negligible for partialwaveswith L � 3.

For the T -matrix given in Eq. (4.30), we calculate phase shifts for partial waves with L � 3 and Tlab  300 MeV (see
Ref. [67] for the details of this calculation). The LECs used in this calculation are shown in Table 2, column ‘‘Peripheral
perturbative NN ’’. Note that many determinations of the LECs, ci and d̄i, can be found in the literature. Themost reliable way
to determine the LECs from empirical ⇡N information is to extract them from the ⇡N amplitude inside the Mandelstam
triangle (unphysical region) which can be constructed with the help of dispersion relations from empirical ⇡N data. This
methodwas used by Büttiker andMeißner [138]. Unfortunately, the values for c2 and all d̄i parameters obtained in Ref. [138]
carry uncertainties, so large that the values cannot provide any guidance. Therefore, in Table 2, only c1, c3, and c4 are from
Ref. [138], while the other LECs are taken from Ref. [123] where the ⇡N amplitude in the physical region was considered.
To establish a link between ⇡N and NN , we apply the values from the above determinations in our calculations of the NN
peripheral phase shifts. In general, we use the central values; the only exception is c3, where we choose a value that is,
in terms of magnitude, about one standard deviation below the one from Ref. [138]. With the exception of c3, phase shift
predictions do not depend sensitively on variations of the LECs within the quoted uncertainties.

In Figs. 8 and 9, we show the phase shift predictions for neutron–proton scattering in F and G waves, respectively, for
laboratory kinetic energies below 300 MeV. The orders displayed are defined as follows:

• Leading order (LO) is just 1PE, first term on the r.h.s. of Eq. (4.30).
• Next-to-leading order (NLO) includes the first two terms on the r.h.s. of Eq. (4.30) (1PE & iterative 2PE) plus V 0(2)

2⇡
[Section 4.1.2, Eqs. (4.9) and (4.10)].

• Next-to-next-to-leading order (NNLO) consists of NLO plus V 0(3)
2⇡ [Section 4.1.2, Eqs. (4.13)–(4.18)].

• Next-to-next-to-next-to-leading order (denoted by N3LO in the figures) is made up of NNLO plus V 0(4)
2⇡ [Appendix D,

Eqs. (D.1)–(D.15) and (D.18)–(D.27)].

R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75 23

Fig. 9. Same as Fig. 8, but for Gwaves.

It is clearly seen in Figs. 8 and 9 that the leading 2⇡ exchange (NLO) is, in general, rather small, insufficient to explain the
empirical facts in most partial waves. In contrast, the next order (NNLO) is very large; in some cases, several times NLO.
This is due to the ⇡⇡NN contact interactions proportional to the LECs ci that are introduced in the subleading Lagrangian
L�=1, Eq. (2.66). These contacts are supposed to simulate the contributions from intermediate �-isobars and correlated 2⇡
exchange which are known to be large and crucial for a realistic model for the NN interaction at intermediate ranges (see,
e. g., Ref. [20]).

At N3LO a clearly identifiable trend towards convergence emerges. In G waves (except for 3G5, see Appendix D.3 for a
discussion of this issue), N3LO differs very little from NNLO implying that we have reached convergence. Also 1F3 and 3F4
appear fully converged. However, in 3F2 and 3F3, N3LO differs noticeably fromNNLO, but the difference is much smaller than
the one between NNLO and NLO. This is what we perceive as a trend towards convergence. Individual N3LO contributions
to peripheral phase shifts are shown in Appendix D.3.

In Figs. 10 and 11,we conduct a comparison between the predictions fromchiral one- and two-pion exchange atN3LO and
the corresponding predictions from conventional meson theory (curve ‘Bonn’). As representative for conventional meson
theory, we choose the Bonn meson-exchange model for the NN interaction [20], since it contains a comprehensive and
thoughtfully constructed model for 2⇡ exchange. This 2⇡ model includes box and crossed box diagrams with NN , N�, and
�� intermediate states as well as direct ⇡⇡ interaction in S and P waves (of the ⇡⇡ system) consistent with empirical
information from ⇡N and ⇡⇡ scattering. Besides this the Bonn model also includes (repulsive) ! meson exchange and
irreducible diagrams of ⇡ and ⇢ exchange (which are also repulsive). However, note that in the phase shift predictions
displayed in Figs. 10 and 11, the ‘‘Bonn’’ curve includes only the 1⇡ and 2⇡ contributions from the Bonn model; the short-
range contributions are left out since the purpose of the figure is to compare different models/theories for ⇡ + 2⇡ . In all
waves shown (with the usual exception of 3G5) we see, in general, good agreement between N3LO and Bonn. In 3F2 and
3F3 above 150 MeV and in 3F4 above 250 MeV the chiral model to N3LO is more attractive than the Bonn 2⇡ model. Note,
however, that the Bonn model is relativistic and, thus, includes relativistic corrections up to infinite orders. Thus, one may
speculate that higher orders in ChPT may create some repulsion, moving the Bonn and the chiral predictions even closer
together [141].

The 2⇡ exchange contribution to theNN interaction can also be derived from empirical⇡N and⇡⇡ input using dispersion
theory, which is based upon unitarity, causality (analyticity), and crossing symmetry. The amplitude NN̄ ! ⇡⇡ is
constructed from ⇡N ! ⇡N and ⇡N ! ⇡⇡N data using crossing properties and analytic continuation; this amplitude
is then ‘squared’ to yield the NN̄ amplitude which is related to NN by crossing symmetry [16]. The Paris group [17,18]
pursued this path and calculated NN phase shifts in peripheral partial waves. Naively, the dispersion-theoretic approach
is the ideal one, since it is based exclusively on empirical information. Unfortunately, in practice, quite a few uncertainties
enter. First, there are ambiguities in the analytic continuation and, second, the dispersion integrals have to be cut off at a
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Fig. 12. Phase shifts of np scattering as calculated from NN potentials at different orders of ChPT. The black dotted line is LO (500), the blue dashed is NLO
(550/700) [172], the green dash-dotted NNLO (600/700) [172], and the red solid N3LO (500) [68], where the numbers in parentheses denote the cutoffs in
MeV. Partial waves with total angular momentum J  1 are displayed. Empirical phase shifts (solid dots and open circles) as in Fig. 8.

3. Add local correction terms (also known as contact or counterterms) to the effective Hamiltonian. Thesemimic the effects
of the high-momentum states excluded by the cutoff introduced in the previous step. In themeson-exchange picture, the
short-range nuclear force is described by heavy meson exchange, like the ⇢(770) and !(782). However, at low energy,
such structures are not resolved. Since wemust include contact terms anyhow, it is most efficient to use them to account
for any heavy meson exchange as well. The correction terms systematically remove dependence on the cutoff.
A first investigation in the above spirit has been conducted by Epelbaum and Meißner [155] in 2006. The authors stress

that there is no point in taking the cutoff ⇤ beyond the breakdown scale of the EFT, ⇤� ⇡ m⇢ ⇡ 1 GeV, since the error of
the calculation is not expected to decrease in that regime. Any value for the cutoff parameter ⇤ is acceptable if the error
associated with its finite value is within the theoretical uncertainty at the given order. The authors conduct an investigation
at LO (including only the counterterms implied by Weinberg counting) and find that, starting from ⇤ ⇡ 3 fm�1, the error
in the NN phase shifts due to keeping ⇤ finite stays within the theoretical uncertainty at LO.

4.5.4. Concluding the renormalization issue
Crucial for an EFT are regulator independence (within the range of validity of the EFT) and a power counting scheme that

allows for order-by-order improvement with decreasing truncation error. The purpose of renormalization is to achieve this
regulator independence while maintaining a functional power counting scheme. After the comprehensive tries and errors
of the past, it appears that there are two renormalization schemes which have the potential to achieve the above goals and,
therefore, should be investigated systematically in the near future.

32 R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75

Fig. 13. Same as Fig. 12, but J = 2 phase shifts and J  2 mixing parameters are shown.

In scheme one, the LO calculation is conducted nonperturbatively (with ⇤ ! 1 as in [152]) and subleading orders
are added perturbatively in distorted wave Born approximation. As mentioned above, Valderrama has started this in S
waves [163], but results in higher partial waves are needed to fully assess this approach. Even though at this early stage
any judgment is speculative, we take the liberty to predict that this approach will be only of limited success and utility—for
the following reasons. First, it will probably require about twice asmany counterterms asWeinberg counting and, therefore,
will have less predictive power. Second, this scheme may converge badly, because the largest portion of the nuclear force,
namely, the intermediate-range attraction appears at NNLO. Third, as discussed in Ref. [164], this force may be problematic
(and, therefore, impractical) in applications in nuclear few- and many-body systems, because of a pathologically strong
tensor force that will cause bad convergence of energy and wave functions. Finally, in the work that has been conducted so
far within this scheme by Valderrama, it is found that only rather soft cutoffs can be used.

The latter point (namely, soft cutoffs) suggests that one may then as well conduct the calculation nonperturbatively at
all orders (up to N3LO) using Weinberg counting, which is no problem with soft cutoffs. This is scheme two that we propose
to investigate systematically. In the spirit of Lepage, the cutoff independence should be examined for cutoffs below the
hard scale and not beyond. Ranges of cutoff independence within the theoretical error are to be identified using ‘Lepage
plots’ [170]. A very systematic investigation of this kind does not exist at this time and is therefore needed. However, there
is comprehensive circumstantial evidence from the numerous chiralNN potentials constructed over the past decade [53,65–
69,171] (see Figs. 14 and 15, below) indicating that this investigation will most likely be a success. The potentials discussed
in the following section are all based upon Weinberg counting.

Machleidt & Entem, PR 503, 1 (2011)
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ε1 and ε2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff " = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with " = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb

024004-10
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FIG. 3. Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N4LO (right side, purple lines). Dotted, dashed, and
solid lines represent the results obtained with cutoff parameters ! = 450, 500, and 550 MeV, respectively, as also indicated by the curve labels.
Note that, at N4LO, the cases 500 and 550 MeV cannot be distinguished on the scale of the figures for most partial waves. Filled and open
circles as in Fig. 2.
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FIG. 3. Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N4LO (right side, purple lines). Dotted, dashed, and
solid lines represent the results obtained with cutoff parameters ! = 450, 500, and 550 MeV, respectively, as also indicated by the curve labels.
Note that, at N4LO, the cases 500 and 550 MeV cannot be distinguished on the scale of the figures for most partial waves. Filled and open
circles as in Fig. 2.
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TABLE VIII. χ 2/datum for the fit of the pp plus np data up to 190 MeV and two- and three-nucleon bound-state properties as produced
by NN potentials at NNLO and N4LO applying different values for the cutoff parameter " of the regulator function Eq. (2.43). For some of the
notation, see Table VII, where also empirical information on the deuteron and triton can be found.

"(MeV) NNLO N4LO

450 500 550 450 500 550

χ 2/datum pp and np

0–190 MeV (2903 data) 4.12 3.27 3.32 1.17 1.08 1.25
Deuteron
Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575
AS (fm−1/2) 0.8847 0.8844 0.8843 0.8852 0.8852 0.8851
η 0.0255 0.0257 0.0258 0.0254 0.0258 0.0257
rstr (fm) 1.967 1.968 1.968 1.966 1.973 1.971
Q (fm2) 0.269 0.273 0.275 0.269 0.273 0.271
PD (%) 3.95 4.49 4.87 4.38 4.10 4.13
Triton
Bt (MeV) 8.35 8.21 8.10 8.04 8.08 8.12

V. UNCERTAINTY QUANTIFICATIONS

When applying chiral two- and many-body forces in ab
initio calculations producing predictions for observables of
nuclear structure and reactions, major sources of uncertainties
are [54] as follows:

(1) Experimental errors of the input NN data that the 2NFs
are based upon and the input few-nucleon data to which
the 3NFs are adjusted.

(2) Uncertainties in the Hamiltonian due to
(a) uncertainties in the determination of the NN and

3N contact LECs,
(b) uncertainties in the πN LECs,
(c) regulator dependence,
(d) EFT truncation error.

(3) Uncertainties associated with the few- and many-body
methods applied.

The experimental errors in the NN scattering and deuteron
data propagate into the NN potentials that are adjusted to
reproduce those data. To systematically investigate this error
propagation, the Granada group has constructed smooth local
potentials [114], the parameters of which carry the uncertain-
ties implied by the errors in the NN data. Applying 205 Monte
Carlo samples of these potentials, they find an uncertainty of
15 keV for the triton binding energy [115]. In a more recent
study [116], in which only 33 Monte Carlo samples were
used, the Granada group reproduced the uncertainty of 15 keV
for the triton binding energy and, in addition, determined the
uncertainty for the 4He binding energy to be 55 keV. The

TABLE IX. Effective πN LECs (in units of GeV−1) recom-
mended for the 2PE 3NF at the given orders. See text for explanations.

NNLO N3LO N4LO

c̄1 −0.74 −1.20 −0.73
c̄3 −3.61 −4.43 −3.38
c̄4 2.44 2.67 1.69

conclusion is that the statistical error propagation from the NN
input data to the binding energies of light nuclei is negligible
as compared to uncertainties from other sources (discussed
below). Thus, this source of error can be safely neglected at
this time. Furthermore, we need to consider the propagation of
experimental errors from the experimental few-nucleon data
that the 3NF contact terms are fitted to. Also, this will be
negligible as long as the 3NFs are adjusted to data with very
small experimental errors; for example, the empirical binding
energy of the triton is 8.481795 ± 0.000002 MeV, which will
definitely lead to negligible propagation.

Now turning to the Hamiltoninan, we have to first account
for uncertainties in the NN and 3N LECs due to the way they
are fixed. Based upon our experiences from Ref. [78] and the
fact that chiral EFT is a low-energy expansion, we have fitted
the NN contact LECs to the NN data below 100 MeV at LO
and NLO, below 190 MeV at NNLO, and below 290 MeV
at N3LO and N4LO. One could think of choosing these fit
intervals slightly different and a systematic investigation of the
impact of such variation on the NN LECs is still outstanding.
However, we do not anticipate that large uncertainties would
emerge from this source of error.

The story is different for the 3NF contact LECs, since
several very different procedures are in use for how to fix, e.g.,
the two contact parameters of the NNLO 3NF, known as the
cD and cE parameters (and once the ten 3NF contacts at N4LO
come into play, the situation will be even more diverse). Since
at NNLO two parameters have to be fixed, two data are needed.
In most procedures, one of them is the triton binding energy.
For the second datum, the following choices have been made:
the nd doublet scattering length 2and [31], the binding energy
of 4He [117], the point charge radius radius of 4He [40], and the
Gamow-Teller matrix element of tritium β decay [118–120].
Alternatively, the cD and cE parameters have also been pinned
down by just an optimal overall fit of the properties of light
nuclei [121]. The 3NF contact LECs determined by different
procedures will lead to different predictions for the observables
that were not involved in the fitting procedure. The differences
in those results establish the uncertainty. Specifically, it would
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Table 6

Columns three to five display the �2/datum for the reproduction of the 1999 np database [173] (subdivided into energy intervals) by various np potentials.
For the chiral potentials, the �2/datum is stated in terms of ranges which result from a variation of the cutoff parameters used in the regulator functions.
The values of these cutoff parameters in units of MeV are given in parentheses. Tlab denotes the kinetic energy of the incident nucleon in the laboratory
system.

Tlab bin (MeV) # of np data Idaho Juelich Argonne V18 [174]
N3LO [68] (500–600) N3LO [171] (600/700–450/500)

0–100 1058 1.0–1.1 1.0–1.1 0.95
100–190 501 1.1–1.2 1.3–1.8 1.10
190–290 843 1.2–1.4 2.8–20.0 1.11
0–290 2402 1.1–1.3 1.7–7.9 1.04

Irreducible ⇡� exchange [191] causes CIB of order N3LØ (⇤ e2/(4⇡)2). It is a moderate effect in 1S0 (�aCIB ⌘ ⇠0.35 fm)
and small in P and higher partialwaves (cf. Ref. [13]). SomeN3LO potentials [68] do include this⇡� contribution. Corrections
to the ⇡� graphs (which are N4LØ) and even 2⇡� diagrams (N6LØ) have recently been calculated by Kaiser [192–194] and
found to be astonishingly large. No NN calculation has yet included them.

Finally, at N3LØ, several corrections to the long-range electromagnetic interaction occur. The leading relativistic
correction to the static Coulomb potential [176,195] is most conveniently included by replacing the fine-structure constant
@ by

@! = @
E2
p + p2

Mp Ep
. (4.87)

Other electromagnetic contributions to pp scattering are two-photon exchange, the Darwin–Foldy term, vacuum polariza-
tion, and the magnetic moment interaction [139,174]. In the case of np scattering, the electromagnetic interaction consists
only of the magnetic moment contribution. The electromagnetic interactions are important contributions to the scattering
amplitude. Note, however, that in the calculation of the strong nuclear phase shifts the electromagnetic interaction is only
of relevance when its distortion of the wave functions affects the nuclear phase shifts in a non-negligible way. It is well
known that this effect is large for the Coulomb potential in essentially all partial waves, but it is negligible for all other
electromagnetic interactions in all partial waves, except 1S0 below 30 MeV, where the effect can be calculated fairly model-
independently and has been tabulated in Ref. [176]. Thus, in practice, it is sufficient to calculate pp phase shifts with only
the Coulomb effect and np phase shifts without any electromagnetic effects (which is the way the phase shifts published in
Refs. [12,13] and shown in the tables of Appendix F are calculated).

4.6.3. A quantitative NN potential at N3LO
After previous sections have thoroughly prepared the terrain, we will now present a quantitative NN potential at N3LO,

including details of construction and results. We choose the Idaho N3LO potential [68] as example. The isospin-symmetric
part of the chiral NN potential at N3LO is defined in Eq. (4.57) and the isospin violating terms were discussed in the previous
section. Numerous parameters are involved which can be subdivided into three groups: ⇡N LECs, NN contact parameters,
and the cutoff parameter ⇤ of the regulator Eq. (4.63). For ⇤ we choose initially 500 MeV. Within a certain reasonable
range, results should not depend sensitively on ⇤ (cf. discussion in Section 4.5). Therefore, we have also made a second fit
for ⇤ = 600 MeV.

Data fitting and results for NN scattering. The fitting procedure starts with the peripheral partial waves because they involve
fewer and more fundamental parameters. Partial waves with L � 3 are exclusively determined by 1PE and 2PE because
the N3LO contacts contribute to L ⇡ 2 only. 1PE and 2PE at N3LO depend on the axial-vector coupling constant, gA (we use
gA = 1.29), the pion decay constant, f⇡ = 92.4 MeV, and eight low-energy constants (LECs) that appear in the dimension-
two and dimension-three ⇡N Lagrangians, Eqs. (2.57) and (2.58). The LECs are listed in Table 2, where column ‘NN Potential’
shows the values used for the present N3LO potential. In the fitting process, we varied three of them, namely, c2, c3, and c4.
We found that the other LECs are not very effective in the NN system and, therefore, we left them at their central values
as determined in ⇡N analysis. The most influential constant is c3, which – in terms of magnitude – has to be chosen on
the low side (slightly more than one standard deviation below its ⇡N determination), otherwise there is too much central
attraction. Concerning c4, our choice c4 = 5.4 GeV⇠1 lowers the 3F2 phase shift (and slightly the 1F3) bringing it into closer
agreement with the phase shift analysis—as compared to using the ⇡N value c4 = 3.4 GeV⇠1. The other F waves and the
higher partialwaves are essentially unaffected by this variation of c4. Finally, the change of c2 from its⇡N value of 3.28GeV⇠1

to 2.80 GeV⇠1 (our choice) brings about some subtle improvements of the fit, but it is not essential. Overall, the fit of all J � 3
waves is very good. The F-wave phase shifts are, in fact, described better than in the perturbative calculation shown in Fig. 8
because the regulator moderates the attractive surplus, thus, simulating correctly higher order contributions beyond the
present order.

We turn now to the lower partial waves. Here, the most important fit parameters are the ones associated with the 24
contact terms that contribute to the partial waves with L ⇡ 2 (cf. Section 4.3 and Table 4). In addition, we have two charge-
dependent contacts which are used to fit the three different 1S0 scattering lengths, app, ann, and anp.
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Comments on fitting procedures of 3N-LECs
Approach 1:  
Fixed from purely 3-body systems Phillips, NPA 107, 209 (1968)

Hebeler, PR 890, 1 (2021)

Review

K. Hebeler Physics Reports 890 (2021) 1–116

Fig. 8. Three-nucleon couplings cD and cE , fit to the 3H binding energy using the NN potentials of Ref. [188] with ⇤ = 450MeV (dashed) and
⇤ = 500MeV (solid line) at N2LO (red) and N3LO (blue), combined with consistent 3N interactions at these orders using ⇤ = ⇤NN, 3N.
Source: Figure taken from Ref. [127].

Fig. 9. Left: Neutron–deuteron scattering length 2and as function of the LEC cD . The relation between cD and cE has been determined by fits of
the 3H binding energy based on the NN interactions of Ref. [198] for two different cutoff values. The shaded band indicates the uncertainty of the
experimental scattering length. Right: Determination of the LEC cD from the differential cross section in elastic pd scattering, total nd cross section
and the nd doublet scattering length 2a for the cutoff choice of R = 0.9 fm of the interactions at N2LO of Ref. [28]. The smaller (blue) error bars
correspond to the experimental uncertainty while the larger (orange) error bars also take into account the theoretical uncertainty estimated as
described in Ref. [204]. The pink (green) bands show the results from a combined fit to all observables (to observables up to E = 108MeV).
Source: Left figure taken from Ref. [170] and right figure adapted from Ref. [28].

the ground-state energy of 3H. Such fits provide a relation between the two couplings, i.e., formally a function of the
form cE(cD). Fig. 8 shows an example of such relations for interactions at N2LO and N3LO for the recently developed NN
interactions of Ref. [188]. It can be argued if the perfect reproduction of the experimental ground-state energy is useful,
given that the interactions contain inherent uncertainties due to truncation effects of neglected higher order terms of the
chiral expansion. It might be more natural and meaningful to take into account these uncertainties at a given order in the
chiral expansion by fitting the LECs to some range around the experimental value. Such a fit would result in a correlation
band between cD and cE instead of a correlation line. Such a strategy would allow to investigate to what degree fits to
different observables are consistent at a given order in the chiral expansion. Work along these directions is currently
in progress. For the full determination of both 3N couplings, cD and cE , a second few-body observable is needed. Ideally
both observables should be as uncorrelated as possible. Examples of quantities that exhibit significant correlations are the
binding energy of 3He/3H and 4He (‘‘Tjon line’’ [208,209]) or between 3He/3H binding energy and the neutron–deuteron
(nd) scattering length (‘‘Phillips line’’ [210]). The correlation manifests itself in the form of a mild sensitivity of the results
for the correlated observables as a function of the remaining coupling constant.

In the left panel of Fig. 9 we show as an example the results for the nd-scattering length as a function of the LEC cD
after the cE coupling has been fixed to the experimental 3H binding energy for each value of cD [170]. The results show
that the nd scattering length is rather insensitive to cD since the theoretical results are compatible with the experimental
constraints over a wide range of cD values. In addition, minor variations of the cutoff, regularization schemes and inclusion
of higher-order terms tend to lead to significant changes in the values of the extracted LECs. This makes it hard or even
impossible to extract tight and robust constraints on this LEC from a fit to the scattering length alone. One possibility

12

/  g.s. energy3H 3He

Hebeler, PR 890, 1 (2021)

+

K. Hebeler Physics Reports 890 (2021) 1–116

Fig. 8. Three-nucleon couplings cD and cE , fit to the 3H binding energy using the NN potentials of Ref. [188] with ⇤ = 450MeV (dashed) and
⇤ = 500MeV (solid line) at N2LO (red) and N3LO (blue), combined with consistent 3N interactions at these orders using ⇤ = ⇤NN, 3N.
Source: Figure taken from Ref. [127].

Fig. 9. Left: Neutron–deuteron scattering length 2and as function of the LEC cD . The relation between cD and cE has been determined by fits of
the 3H binding energy based on the NN interactions of Ref. [198] for two different cutoff values. The shaded band indicates the uncertainty of the
experimental scattering length. Right: Determination of the LEC cD from the differential cross section in elastic pd scattering, total nd cross section
and the nd doublet scattering length 2a for the cutoff choice of R = 0.9 fm of the interactions at N2LO of Ref. [28]. The smaller (blue) error bars
correspond to the experimental uncertainty while the larger (orange) error bars also take into account the theoretical uncertainty estimated as
described in Ref. [204]. The pink (green) bands show the results from a combined fit to all observables (to observables up to E = 108MeV).
Source: Left figure taken from Ref. [170] and right figure adapted from Ref. [28].

the ground-state energy of 3H. Such fits provide a relation between the two couplings, i.e., formally a function of the
form cE(cD). Fig. 8 shows an example of such relations for interactions at N2LO and N3LO for the recently developed NN
interactions of Ref. [188]. It can be argued if the perfect reproduction of the experimental ground-state energy is useful,
given that the interactions contain inherent uncertainties due to truncation effects of neglected higher order terms of the
chiral expansion. It might be more natural and meaningful to take into account these uncertainties at a given order in the
chiral expansion by fitting the LECs to some range around the experimental value. Such a fit would result in a correlation
band between cD and cE instead of a correlation line. Such a strategy would allow to investigate to what degree fits to
different observables are consistent at a given order in the chiral expansion. Work along these directions is currently
in progress. For the full determination of both 3N couplings, cD and cE , a second few-body observable is needed. Ideally
both observables should be as uncorrelated as possible. Examples of quantities that exhibit significant correlations are the
binding energy of 3He/3H and 4He (‘‘Tjon line’’ [208,209]) or between 3He/3H binding energy and the neutron–deuteron
(nd) scattering length (‘‘Phillips line’’ [210]). The correlation manifests itself in the form of a mild sensitivity of the results
for the correlated observables as a function of the remaining coupling constant.

In the left panel of Fig. 9 we show as an example the results for the nd-scattering length as a function of the LEC cD
after the cE coupling has been fixed to the experimental 3H binding energy for each value of cD [170]. The results show
that the nd scattering length is rather insensitive to cD since the theoretical results are compatible with the experimental
constraints over a wide range of cD values. In addition, minor variations of the cutoff, regularization schemes and inclusion
of higher-order terms tend to lead to significant changes in the values of the extracted LECs. This makes it hard or even
impossible to extract tight and robust constraints on this LEC from a fit to the scattering length alone. One possibility
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Erratum: Three-Nucleon Low-Energy Constants from the Consistency
of Interactions and Currents in Chiral Effective Field Theory

[Phys. Rev. Lett. 103, 102502 (2009)]

Doron Gazit, Sofia Quaglioni, and Petr Navrátil

(Received 27 November 2018; published 15 January 2019)

DOI: 10.1103/PhysRevLett.122.029901

It was recently brought to our attention [1] that Eq. (2) contains an erroneous factor of −4 in the coefficient multiplying
the cD low-energy constant (LEC). The correct expression for the strength d̂R of the contact term of the meson-exchange
currents (MEC) is given by

d̂R ¼ −
MN

4ΛχgA
cD þ 1

3
MNðc3 þ 2c4Þ þ

1

6
: ð2Þ

This mistake affects the determination of the LEC cD entering the one-pion exchange plus the contact term of the three-
nucleon (NNN) force at next-to-next-to-leading order (N2LO) from the triton β decay, i.e., the results shown in Fig. 3. The
correct results are shown in the figure below, where the shaded area represents a 2σ tolerance band. Agreement with the
empirical value based on a 2σ error bar is found for cD ¼ 0.83% 0.24. The corresponding cE values are given by
cE ¼ −0.052þ0.033

−0.034 . As in the original Letter, the computed hEA
1 itheor=hEA

1 iemp ratio is rather insensitive to the NNN force.
However, due to the roughly factor of −4 rescaling of cD, the difference with respect to results obtained using A ¼ 3 wave
functions produced by the phenomenological AV18 nucleon-nucleon (NN) potential and by the next-to-next-to-next-to-
leading order (N3LO) NN potentials of Epelbaum et al. [30] is now amplified. Similarly, calculations (without NNN force)
carried out by setting c4 to 3.4 GeV−1 in the axial-vector current, while the A ¼ 3 wave functions are obtained from the
N3LO NN potential of Ref. [22] produces a shift of about −1.2 in the cD values.
Table I displayed the 3H, 3He, and 4He ground state (g.s.) energies and point-proton radii obtained using the N3LO NN

potential [22] with and without the local N2LO NNN interaction [23] with cD ¼ −0.2 and cE ¼ −0.205. The updated table
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FIG. 3. The ratio hEA
1 itheor=hEA

1 iemp using the N3LONN potential [22] with and without the local N2LONNN interaction [23], and the
axial current with and without MEC (cD and cE are varied along the averaged trajectory of Fig. 2). The shaded area represents a 2σ
tolerance band. Also shown are the results for the phenomenological AV18 potential (with Λ ¼ 500 MeV imposed in the current), and
for the N3LO NN potential of Epelbaum et al. [30] (with Λ ¼ 450, 600 MeV, and a 700 MeV spectral-function cutoff in the two-pion
exchange).
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I personally believe this approach is appropriate.
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Comments on fitting procedures of 3N-LECs
Approach 2:  
Fixed from 4He and/or heavier systems Tjon, PLB 56, 217 (1975)
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Fig. 10. Left: Coupling values for cE and cD obtained by fits to the 4He binding energy using different operator forms and different cutoff values
R0 (see Ref. [47] for details). The stars in the left panel indicate the values of cD and cE that simultaneously fit the experimental binding energy
of 4He and the n↵ P-wave phase shifts (see right panel). Right: P-wave n↵ elastic scattering phase shifts compared with an R-matrix analysis of
experimental data. The same color coding as in the left panel has been used. Colors correspond to the left panel.
Source: Figures taken from Ref. [47].

to improve such a fit is to include additional scattering observables and perform a global fit. An example of such an
analysis is shown in the right panel of Fig. 9. The figure shows the constraints on cD resulting from the reproduction of
the proton–deuteron differential cross section data at E = 70 and 135 MeV based on interactions at N2LO of Refs. [189,204]
(see Ref. [28] for details). Such a more global analysis allows to improve the significance and robustness of a fit based on
three-body scattering observables.

Another three-body scattering observable sensitive to 3N interaction contributions is connected to the long-standing
‘‘Ay puzzle’’ [21,211]. This puzzle refers to the observed large discrepancy between theoretical predictions and experimen-
tal measurements of a particular polarization observable, the so called vector analyzing power, in elastic nucleon–deuteron
scattering in the region of its maximum around the center-of-mass angle ⇥cm ⇡ 120� and for incoming nucleon energies
below E ⇡ 20 MeV [21,212,213]. So far, no satisfactory resolution of this puzzle has been found. However, it should be
emphasized that the low-energy vector analyzing power is a fine-tuned observable which is very sensitive to changes in
3Pj NN force components [187]. Thus, it is not obvious if the observed discrepancies can be mainly attributed to deficiencies
of presently used NN interaction or to genuine three-body effects (see also Fig. 65).

In Fig. 10 we show as another example the results of 3N interaction fits using quantum Monte-Carlo methods
to the binding energy of 4He and the spin–orbit splitting in the n↵ P-wave phase shifts, i.e., a five-body scattering
observable [47]. These calculations are based on the NN interactions presented in Refs. [45,46] and use a purely local
coordinate-space regularization scheme (see Section 3.7 for details). These calculations demonstrate that the employed
NN and 3N interactions derived from chiral EFT up to N2LO are capable of correctly predicting n↵ scattering phase shifts
and properties of light nuclei within theoretical uncertainties. The inclusion of n↵ scattering phase shifts in the fitting
process was triggered by the inability of previous phenomenological 3N interactions like the Urbana IX interaction [214]
to correctly describe the spin–orbit splitting in neutron-rich systems, which in turn motivated the inclusion of three-pion
exchange diagrams in the Illinois 3N models [215]. Since the n↵ scattering phase shifts are sensitive to three-neutron
forces, this strategy might constrain this part of the 3N interactions and lead to a better agreement in neutron-rich
systems. In addition, the results of Ref. [47] investigated the impact of the Fierz-ambiguity on observables when using
local regulators (see Section 3.7.4 and also Ref. [216]) and showed that the fitted NN plus 3N interactions lead to pure
neutron matter results in good agreement with other works [178].

For comparison to the results shown in Fig. 9 we show in Fig. 11 3N fits based on observables that are less correlated,
in this case the 3H binding energy and the � decay half-life of 3H. The latter observable was first suggested in Ref. [217]
in the year 2006 as a suitable observable to constrain 3N forces, while it was first implemented in Ref. [148] three years
later. Such fits based on electroweak reactions take advantage of one of the key strengths of chiral EFT, that nuclear
interactions and nuclear currents are derived from the same Lagrangian and hence contain the same low-energy couplings.
In particular, for the calculations in Ref. [148] and later in Refs. [32,218,219] the dependence of the axial two-body
current on the 3N coupling cD was exploited.2 This dependence leads a strong sensitivity in the predictions of the 3H

2 We note that in all original publications an incorrect factor of �4 was included in the coefficient multiplying the coupling cD in the nuclear
current [220]. This error was corrected later in all those references.
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Fig. 10. Left: Coupling values for cE and cD obtained by fits to the 4He binding energy using different operator forms and different cutoff values
R0 (see Ref. [47] for details). The stars in the left panel indicate the values of cD and cE that simultaneously fit the experimental binding energy
of 4He and the n↵ P-wave phase shifts (see right panel). Right: P-wave n↵ elastic scattering phase shifts compared with an R-matrix analysis of
experimental data. The same color coding as in the left panel has been used. Colors correspond to the left panel.
Source: Figures taken from Ref. [47].

to improve such a fit is to include additional scattering observables and perform a global fit. An example of such an
analysis is shown in the right panel of Fig. 9. The figure shows the constraints on cD resulting from the reproduction of
the proton–deuteron differential cross section data at E = 70 and 135 MeV based on interactions at N2LO of Refs. [189,204]
(see Ref. [28] for details). Such a more global analysis allows to improve the significance and robustness of a fit based on
three-body scattering observables.

Another three-body scattering observable sensitive to 3N interaction contributions is connected to the long-standing
‘‘Ay puzzle’’ [21,211]. This puzzle refers to the observed large discrepancy between theoretical predictions and experimen-
tal measurements of a particular polarization observable, the so called vector analyzing power, in elastic nucleon–deuteron
scattering in the region of its maximum around the center-of-mass angle ⇥cm ⇡ 120� and for incoming nucleon energies
below E ⇡ 20 MeV [21,212,213]. So far, no satisfactory resolution of this puzzle has been found. However, it should be
emphasized that the low-energy vector analyzing power is a fine-tuned observable which is very sensitive to changes in
3Pj NN force components [187]. Thus, it is not obvious if the observed discrepancies can be mainly attributed to deficiencies
of presently used NN interaction or to genuine three-body effects (see also Fig. 65).

In Fig. 10 we show as another example the results of 3N interaction fits using quantum Monte-Carlo methods
to the binding energy of 4He and the spin–orbit splitting in the n↵ P-wave phase shifts, i.e., a five-body scattering
observable [47]. These calculations are based on the NN interactions presented in Refs. [45,46] and use a purely local
coordinate-space regularization scheme (see Section 3.7 for details). These calculations demonstrate that the employed
NN and 3N interactions derived from chiral EFT up to N2LO are capable of correctly predicting n↵ scattering phase shifts
and properties of light nuclei within theoretical uncertainties. The inclusion of n↵ scattering phase shifts in the fitting
process was triggered by the inability of previous phenomenological 3N interactions like the Urbana IX interaction [214]
to correctly describe the spin–orbit splitting in neutron-rich systems, which in turn motivated the inclusion of three-pion
exchange diagrams in the Illinois 3N models [215]. Since the n↵ scattering phase shifts are sensitive to three-neutron
forces, this strategy might constrain this part of the 3N interactions and lead to a better agreement in neutron-rich
systems. In addition, the results of Ref. [47] investigated the impact of the Fierz-ambiguity on observables when using
local regulators (see Section 3.7.4 and also Ref. [216]) and showed that the fitted NN plus 3N interactions lead to pure
neutron matter results in good agreement with other works [178].

For comparison to the results shown in Fig. 9 we show in Fig. 11 3N fits based on observables that are less correlated,
in this case the 3H binding energy and the � decay half-life of 3H. The latter observable was first suggested in Ref. [217]
in the year 2006 as a suitable observable to constrain 3N forces, while it was first implemented in Ref. [148] three years
later. Such fits based on electroweak reactions take advantage of one of the key strengths of chiral EFT, that nuclear
interactions and nuclear currents are derived from the same Lagrangian and hence contain the same low-energy couplings.
In particular, for the calculations in Ref. [148] and later in Refs. [32,218,219] the dependence of the axial two-body
current on the 3N coupling cD was exploited.2 This dependence leads a strong sensitivity in the predictions of the 3H

2 We note that in all original publications an incorrect factor of �4 was included in the coefficient multiplying the coupling cD in the nuclear
current [220]. This error was corrected later in all those references.
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Comments on fitting procedures of 3N-LECs
Approach 3:  
Totally phenomenological (NNLOsat)
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From few-body systems to carbon and oxygen isotopes
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.

051301-4

RAPID COMMUNICATIONS
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NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
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phase shift analysis (black squares) and the NNLO potentials (green)
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dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]

051301-2

Is it a realistic force?

25



Chiral three-nucleon force



Hierarchy of chiral EFT 

Entem +, PRC 96, 024004 (2017)HIGH-QUALITY TWO-NUCLEON POTENTIALS UP TO . . . PHYSICAL REVIEW C 96, 024004 (2017)
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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FIG. 6. The elastic Nd scattering differential cross section dσ
d"

at
the incoming nucleon laboratory energies E = 10, 70, 135, 190, and
250 MeV. The (red) solid lines were obtained with the SMS N4LO+

NN potential with the regularization parameter # = 450 MeV. When
that potential is supplemented with the N2LO 3NF with the strengths
of the contact terms cd = 2.0 and cE = 0.2866 (combination repro-
ducing the 3H binding energy and providing a good description of
the 70 MeV pd cross sections) predictions are displayed with the
(maroon) dotted lines. The (green) dashed lines show the results
obtained with the strengths of contact terms presented in Table III,
fixed in the multi-energy least squares fit to data at E = 10, 70, and
135 MeV (shown in Table II). The (blue) circles and (orange) squares
are 10 MeV nd data from Ref. [40] and pd data from Ref. [41],
respectively. The (blue) circles at other energies are pd data from
70 MeV [45], 135 MeV [45,47], 190 MeV [48], 250 MeV [52]. The
(orange) squares at 250 MeV are 248 MeV nd data of Ref. [51].

N3LO term in the 3NF. Therefore, the present investigation
should be repeated when this term is available.

In Figs. 6–11 we show how well the data from our basis
(the green dashed lines) are described by the 3N Hamiltonian
with fixed, in this way, strengths of contact terms. Since the
least squares fit was performed for data at the three lowest
energies, the results at 190 and 250 MeV should be consid-
ered as predictions. To assess the magnitudes of the contact
terms’ effects we show also predictions based on the NN
SMS N4LO+ potential (the red solid lines) and the results
obtained when the latter was augmented by the N2LO 3NF
with the strengths of D and E terms, cD = 2.0, cE = 0.2866,
determined from the 3H binding energy and the 70 MeV pd
cross section (the maroon dotted lines).

In nearly all cases, the fit to data improves significantly
the description of not only fitted data but also the data at the

FIG. 7. The same as in Fig. 6 but for the nucleon analyzing power
Ay. The data are from 10 MeV (blue) circles nd data [42] and (green)
squares pd data [43], 70 MeV (blue) circles pd data (at 65 MeV)
[46], 135 MeV (blue) circles pd data [49] (orange) squares pd data
[48], 190 MeV (blue) circles pd data [48], 250 MeV (blue) circles
pd data [52].

two largest energies. It is very clear, especially for the cross
section (see Fig. 6), where the discrepancy between data and
theory, found in the region of the cross-section minimum up
to the backward c.m. angles, is practically removed at 70 and
135 MeV. At 190 and 250 MeV, the inclusion of N4LO contact
terms brings the theory closer to data.

For the nucleon Ay and the deuteron vector iT11 analyzing
powers there is a significant improvement of the data descrip-
tion in the maximum of the analyzing power at 10 MeV (see
Figs. 7 and 8). That effect was also found below the deuteron
breakup threshold in Ref. [26] and supports the conclusion
of Ref. [26] that the low-energy analyzing power puzzle may
probably find its solution in the subleading N4LO 3NF con-
tact terms.

A similar picture emerges for the tensor analyzing powers
(see Figs. 9–11); here, however, at the largest energies big
discrepancies to data remain.

The large advancement in the description of the elastic
Nd scattering cross section documented in Fig. 6 at the two
largest energies prompted us to verify the situation for the
total nd scattering cross section. In Fig. 12 we show at a
few energies the SMS N4LO+ NN potential predictions (the
green circles) together with results calculated with this NN
force combined with the N2LO 3NF (blue diamonds). We
display also the total cross section data from Ref. [6] (magenta
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In Figs. 6–11 we show how well the data from our basis
(the green dashed lines) are described by the 3N Hamiltonian
with fixed, in this way, strengths of contact terms. Since the
least squares fit was performed for data at the three lowest
energies, the results at 190 and 250 MeV should be consid-
ered as predictions. To assess the magnitudes of the contact
terms’ effects we show also predictions based on the NN
SMS N4LO+ potential (the red solid lines) and the results
obtained when the latter was augmented by the N2LO 3NF
with the strengths of D and E terms, cD = 2.0, cE = 0.2866,
determined from the 3H binding energy and the 70 MeV pd
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Ay. The data are from 10 MeV (blue) circles nd data [42] and (green)
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two largest energies. It is very clear, especially for the cross
section (see Fig. 6), where the discrepancy between data and
theory, found in the region of the cross-section minimum up
to the backward c.m. angles, is practically removed at 70 and
135 MeV. At 190 and 250 MeV, the inclusion of N4LO contact
terms brings the theory closer to data.

For the nucleon Ay and the deuteron vector iT11 analyzing
powers there is a significant improvement of the data descrip-
tion in the maximum of the analyzing power at 10 MeV (see
Figs. 7 and 8). That effect was also found below the deuteron
breakup threshold in Ref. [26] and supports the conclusion
of Ref. [26] that the low-energy analyzing power puzzle may
probably find its solution in the subleading N4LO 3NF con-
tact terms.

A similar picture emerges for the tensor analyzing powers
(see Figs. 9–11); here, however, at the largest energies big
discrepancies to data remain.

The large advancement in the description of the elastic
Nd scattering cross section documented in Fig. 6 at the two
largest energies prompted us to verify the situation for the
total nd scattering cross section. In Fig. 12 we show at a
few energies the SMS N4LO+ NN potential predictions (the
green circles) together with results calculated with this NN
force combined with the N2LO 3NF (blue diamonds). We
display also the total cross section data from Ref. [6] (magenta
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Nogga +, PRC, 65, 054003 (2002)table also includes results for a modified TM interaction. It
has been argued in Ref. !68" that the long-range/short-range
part of the c term is not consistent with chiral symmetry.
Dropping it leads to a changed set of parameters, which we
refer to as TM!. The parameters of TM and TM! are sum-
marized in Table XI of Appendix B.
The fits have been done using less accurate BE calcula-

tions not including the isospin T! 3
2 component and not in-

cluding the effect of the n-p mass difference. Therefore, the
new results for the BE’s, shown in the table, do not exactly
match the experimental values. The deviations are nonsig-
nificant for the following study, so we refrain from refitting
the #’s. We adjusted TM to the 3H BE and TM! to the 3He
BE. The table also shows our results using the Urb-IX inter-
action, as defined in Ref. !24".
Table II confirms at the same time a well-known scaling

behavior of the Coulomb interaction with the BE of 3He
!70". The adjusted 3N Hamiltonians predict very similar 3N
binding energies and $EB’s. This removes the model depen-
dence of $EB found in Table I. We observe that the model-
independent prediction for these energy difference deviates
from the experimental value by about 20 keV. Again, we
refer to Ref. !55" for a more detailed discussion of this issue.
In the same reference, a detailed comparison with hyper-
spherical variational calculations is given. In Table I, for
comparison, we only show the BE’s obtained by the Pisa and
Argonne groups. We note that the calculation by the Pisa
group is in full agreement with our results. The small devia-

tion from the Argonne result is not significant in view of the
comparably large statistical error bar of the GFMC calcula-
tion.
We are now ready to apply the 3N model Hamiltonians,

given by the # values in Table II, to the 4N system. By
using the models from Table II, we ensure that dependences
due to scaling effects, as visible, for example, in $EB , are
excluded. Given the very different functional forms of the
Urb-IX, TM, and TM! interactions, we can expect to see any
remaining model dependences in our calculations.

B. !-particle binding energies

Based on these model Hamiltonians, we solved the YE’s
%2& and %3& with no uncontrolled approximation. The follow-
ing results are based on a partial-wave decomposition trun-
cated using lsum

max!14. It has been verified that this is suffi-
cient to obtain converged BE’s with an accuracy of 50 keV.
The binding energies given were found varying the energy
parameter in Eqs. %2& and %3& until the eigenvalue 1 appears
in the spectrum of the set of YE’s.
Independently, one can check the results with a calcula-

tion of the expectation value of the Hamiltonian. We empha-
size that this is an important feature of our method, which
minimizes the possibility of errors in the codes or unex-
pected numerical difficulties.
For these checks one faces the problem to represent the

WF with high accuracy. We already pointed out that the WF
of the ' particle is extremely slowly converging, because
there is no set of Jacobi momenta suitable to describe the
short-range correlation in all NN pairs. In Table III we ex-
emplify the convergence behavior of the WF for the AV18
interaction. The normalization and the expectation values of
the kinetic energy, potential energy, and Hamiltonian are
shown. The WF’s have been derived from the same set of
YC’s, using Eq. %4&. The calculation of the WF is based on a
partial-wave decomposition truncated with lsum

max!14. In this
way we obtained the WF in the two different representations,
depicted in Fig. 1. For the expectation values shown in the
table, we truncated the WF in a second step to the partial
waves given by the lsum

max parameter in the first column. It
turned out that the evaluation of the kinetic energy is diffi-
cult, because T amplifies the slowly converging high-
momentum components of the WF. The kinetic-energy ex-

TABLE II. 3N binding energy results for different combinations
of NN and 3N interactions, together with the adjusted form factor
parameters # in units of m( . The binding energies for 3H E(3H)
and 3He E(3He) are shown. For completeness, the splitting $EB is
also displayed. All energies are given in MeV.

Interaction # E(3H) E(3He) $EB

CD-Bonn"TM 4.784 #8.478 #7.735 0.743
AV18"TM 5.156 #8.478 #7.733 0.744
AV18"TM’ 4.756 #8.448 #7.706 0.742
AV18"Urb-IX #8.484 #7.739 0.745
AV18"Urb-IX %Pisa& !69" #8.485 #7.742 0.743
AV18"Urb-IX %Argonne& !28" #8.47%1&
Expt. #8.482 #7.718 0.764

TABLE III. Convergence of the '-particle WF for different truncations of the basis states. The super-
scripts 1A and 2A indicate the type of Jacobi coordinates employed. The results are based on a calculation
using the AV18 NN interaction and no 3NF. See text for details.

lsum
max )*!*+1A )*!*+2A )*!T!*+1A )*!T!*+2A T(mix) )*!V!*+1A )*!V!*+2A )H+1A )H+2A

2 0.9117 0.9084 61.27 62.14 91.80 #110.20 #110.44 #18.40 #18.65
4 0.9662 0.9582 79.10 76.11 96.85 #117.55 #118.12 #20.70 #21.27
6 0.9820 0.9766 86.36 83.49 97.56 #120.66 #120.71 #23.09 #23.15
8 0.9927 0.9890 92.41 90.09 97.75 #121.43 #121.39 #23.67 #23.63
10 0.9961 0.9939 94.59 92.93 97.79 #121.84 #121.84 #24.05 #24.05
12 0.9982 0.9969 96.10 95.04 97.80 #121.97 #121.96 #24.16 #24.16
14 0.9990 0.9986 96.51 95.70 97.80 #122.03 #122.01 #24.23 #24.21

THE ' PARTICLE BASED ON MODERN NUCLEAR FORCES PHYSICAL REVIEW C 65 054003
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FIG. 6. The elastic Nd scattering differential cross section dσ
d"

at
the incoming nucleon laboratory energies E = 10, 70, 135, 190, and
250 MeV. The (red) solid lines were obtained with the SMS N4LO+

NN potential with the regularization parameter # = 450 MeV. When
that potential is supplemented with the N2LO 3NF with the strengths
of the contact terms cd = 2.0 and cE = 0.2866 (combination repro-
ducing the 3H binding energy and providing a good description of
the 70 MeV pd cross sections) predictions are displayed with the
(maroon) dotted lines. The (green) dashed lines show the results
obtained with the strengths of contact terms presented in Table III,
fixed in the multi-energy least squares fit to data at E = 10, 70, and
135 MeV (shown in Table II). The (blue) circles and (orange) squares
are 10 MeV nd data from Ref. [40] and pd data from Ref. [41],
respectively. The (blue) circles at other energies are pd data from
70 MeV [45], 135 MeV [45,47], 190 MeV [48], 250 MeV [52]. The
(orange) squares at 250 MeV are 248 MeV nd data of Ref. [51].

N3LO term in the 3NF. Therefore, the present investigation
should be repeated when this term is available.

In Figs. 6–11 we show how well the data from our basis
(the green dashed lines) are described by the 3N Hamiltonian
with fixed, in this way, strengths of contact terms. Since the
least squares fit was performed for data at the three lowest
energies, the results at 190 and 250 MeV should be consid-
ered as predictions. To assess the magnitudes of the contact
terms’ effects we show also predictions based on the NN
SMS N4LO+ potential (the red solid lines) and the results
obtained when the latter was augmented by the N2LO 3NF
with the strengths of D and E terms, cD = 2.0, cE = 0.2866,
determined from the 3H binding energy and the 70 MeV pd
cross section (the maroon dotted lines).

In nearly all cases, the fit to data improves significantly
the description of not only fitted data but also the data at the

FIG. 7. The same as in Fig. 6 but for the nucleon analyzing power
Ay. The data are from 10 MeV (blue) circles nd data [42] and (green)
squares pd data [43], 70 MeV (blue) circles pd data (at 65 MeV)
[46], 135 MeV (blue) circles pd data [49] (orange) squares pd data
[48], 190 MeV (blue) circles pd data [48], 250 MeV (blue) circles
pd data [52].

two largest energies. It is very clear, especially for the cross
section (see Fig. 6), where the discrepancy between data and
theory, found in the region of the cross-section minimum up
to the backward c.m. angles, is practically removed at 70 and
135 MeV. At 190 and 250 MeV, the inclusion of N4LO contact
terms brings the theory closer to data.

For the nucleon Ay and the deuteron vector iT11 analyzing
powers there is a significant improvement of the data descrip-
tion in the maximum of the analyzing power at 10 MeV (see
Figs. 7 and 8). That effect was also found below the deuteron
breakup threshold in Ref. [26] and supports the conclusion
of Ref. [26] that the low-energy analyzing power puzzle may
probably find its solution in the subleading N4LO 3NF con-
tact terms.

A similar picture emerges for the tensor analyzing powers
(see Figs. 9–11); here, however, at the largest energies big
discrepancies to data remain.

The large advancement in the description of the elastic
Nd scattering cross section documented in Fig. 6 at the two
largest energies prompted us to verify the situation for the
total nd scattering cross section. In Fig. 12 we show at a
few energies the SMS N4LO+ NN potential predictions (the
green circles) together with results calculated with this NN
force combined with the N2LO 3NF (blue diamonds). We
display also the total cross section data from Ref. [6] (magenta
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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FIG. 6. The elastic Nd scattering differential cross section dσ
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at
the incoming nucleon laboratory energies E = 10, 70, 135, 190, and
250 MeV. The (red) solid lines were obtained with the SMS N4LO+

NN potential with the regularization parameter # = 450 MeV. When
that potential is supplemented with the N2LO 3NF with the strengths
of the contact terms cd = 2.0 and cE = 0.2866 (combination repro-
ducing the 3H binding energy and providing a good description of
the 70 MeV pd cross sections) predictions are displayed with the
(maroon) dotted lines. The (green) dashed lines show the results
obtained with the strengths of contact terms presented in Table III,
fixed in the multi-energy least squares fit to data at E = 10, 70, and
135 MeV (shown in Table II). The (blue) circles and (orange) squares
are 10 MeV nd data from Ref. [40] and pd data from Ref. [41],
respectively. The (blue) circles at other energies are pd data from
70 MeV [45], 135 MeV [45,47], 190 MeV [48], 250 MeV [52]. The
(orange) squares at 250 MeV are 248 MeV nd data of Ref. [51].

N3LO term in the 3NF. Therefore, the present investigation
should be repeated when this term is available.

In Figs. 6–11 we show how well the data from our basis
(the green dashed lines) are described by the 3N Hamiltonian
with fixed, in this way, strengths of contact terms. Since the
least squares fit was performed for data at the three lowest
energies, the results at 190 and 250 MeV should be consid-
ered as predictions. To assess the magnitudes of the contact
terms’ effects we show also predictions based on the NN
SMS N4LO+ potential (the red solid lines) and the results
obtained when the latter was augmented by the N2LO 3NF
with the strengths of D and E terms, cD = 2.0, cE = 0.2866,
determined from the 3H binding energy and the 70 MeV pd
cross section (the maroon dotted lines).

In nearly all cases, the fit to data improves significantly
the description of not only fitted data but also the data at the

FIG. 7. The same as in Fig. 6 but for the nucleon analyzing power
Ay. The data are from 10 MeV (blue) circles nd data [42] and (green)
squares pd data [43], 70 MeV (blue) circles pd data (at 65 MeV)
[46], 135 MeV (blue) circles pd data [49] (orange) squares pd data
[48], 190 MeV (blue) circles pd data [48], 250 MeV (blue) circles
pd data [52].

two largest energies. It is very clear, especially for the cross
section (see Fig. 6), where the discrepancy between data and
theory, found in the region of the cross-section minimum up
to the backward c.m. angles, is practically removed at 70 and
135 MeV. At 190 and 250 MeV, the inclusion of N4LO contact
terms brings the theory closer to data.

For the nucleon Ay and the deuteron vector iT11 analyzing
powers there is a significant improvement of the data descrip-
tion in the maximum of the analyzing power at 10 MeV (see
Figs. 7 and 8). That effect was also found below the deuteron
breakup threshold in Ref. [26] and supports the conclusion
of Ref. [26] that the low-energy analyzing power puzzle may
probably find its solution in the subleading N4LO 3NF con-
tact terms.

A similar picture emerges for the tensor analyzing powers
(see Figs. 9–11); here, however, at the largest energies big
discrepancies to data remain.

The large advancement in the description of the elastic
Nd scattering cross section documented in Fig. 6 at the two
largest energies prompted us to verify the situation for the
total nd scattering cross section. In Fig. 12 we show at a
few energies the SMS N4LO+ NN potential predictions (the
green circles) together with results calculated with this NN
force combined with the N2LO 3NF (blue diamonds). We
display also the total cross section data from Ref. [6] (magenta
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines represent pions. Small dots, large solid dots,
solid squares, triangles, diamonds, and stars denote vertexes of index !i = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

Consider a m-nucleon irreducibly connected diagram (m-
nucleon force) in an A-nucleon system (m ! A). The number
of separately connected pieces is C = A − m + 1. Inserting
this into Eq. (2.5) together with L = 0 and

∑
i !i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at
ν = 0, three-nucleon forces (m = 3) appear at ν = 2 (but they
happen to cancel at that order), and four-nucleon forces appear
at ν = 4 (they do not cancel).

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

!i . (2.7)

In summary, the chief point of the ChPT expansion of the
potential is that, at a given order ν, there exists only a finite
number of graphs. This is what makes the theory calculable.
The expression (Q/#χ )ν+1 provides an estimate of the relative
size of the contributions left out and thus of the relative

uncertainty at order ν. The ability to calculate observables
(in principle) to any degree of accuracy gives the theory its
predictive power.

Chiral perturbation theory and power counting imply that
nuclear forces evolve as a hierarchy controlled by the power
ν; see Fig. 1 for an overview. In what follows, we will focus
on the two-nucleon force (2NF).

C. The long-range NN potential

The long-range part of the NN potential is built up from pion
exchanges, which are ruled by chiral symmetry. The various
pion-exchange contributions may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.8)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
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We use the N3LO NN interaction of [13]. We adopt the c1, c3 and c4 LEC
values as well as the value of L from the N3LO NN interaction of [13] for our local
chiral EFT N2LO NNN interaction. The regulator function was chosen in a form
consistent with that used in [11] and [13]: Fðq2;LÞ ¼ exp½%q4=L4& (11). We note
that the momentum-space N3LO NN interaction is regulated with the nucleon
momentum cutoff, while our local chiral EFT N2LO NNN interaction is regulated
with the momentum transfer cutoff. Due to the choice of the fourth power of the
momentum (11), this inconsistency is beyond the order at which our calculations
are performed. Values of the cD and cE LECs are constrained by a fit to the A ¼ 3
system binding energy [18, 14]. Obviously, additional constraints are needed to
uniquely determine values of cD and cE, see [11, 18, 14, 39] for discussions of
different possibilities. Here we are interested only in convergence properties of our

Table 1 NNN interaction parameters used in the present calculations. The regulator

function was chosen in the form Fðq2;LÞ ¼ exp½%q4=L4&

c1 [GeV%1] c3 [GeV%1] c4 [GeV%1] cD cE

%0.81 %3.2 5.4 1.0 %0.029

L [MeV] L! [MeV] M" [MeV] gA F" [MeV]

500 700 138 1.29 92.4

Fig. 6 3H ground-state energy dependence on the size of the basis. The HO frequency of

!hO ¼ 28MeV was employed. Results with (thick lines) and without (thin lines) the NNN interaction

are shown. The full lines correspond to calculations with two-body effective interaction derived from

the chiral NN interaction, the dashed lines to calculations with the bare chiral NN interaction. For

further details see the text
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Fig. 6 The nd breakup five-fold differential cross section in the SST complete geometry at the incoming neutron laboratory
energies E = 13 MeV and E = 65 MeV, shown as a function of arc-length of the kinematical S-curve [19]. The dashed (red)
lines are predictions of the N4LO SCS NN potential with the regulator R = 0.9 fm. Combining that NN potential with the N2LO
3NF with four different strengths (cD, cE ) of the contact terms from the corelation line of Fig. 1 leads to results shown by different
lines: solid (blue) (4.0,−0.270), dotted (red) (6.0,−1.094), double-dotted-dashed (blue) (8.0,−2.032), and dashed (maroon)
(10.0,−3.108). At E = 13 MeV the (blue) circles are nd data from Ref. [46] and the (red) x-ces are pd data from Ref. [47]. At
E = 65 MeV the (red) x-ces are pd data from Ref. [33]
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Fig. 7 The nd breakup five-fold differential cross section in the QFS complete geometry at the incoming neutron laboratory
energies E = 13 MeV and E = 65 MeV, shown as a function of arc-length of the S-curve. Lines are the same as in Fig. 6. The
(red) x-ces are pd data from Ref. [47] at E = 13 MeV and from Ref. [48] at E = 65 MeV

For the pp QFS geometry, we show in Fig. 7 the predictions based on the N4LO chiral potentials at
E = 13 MeV and 65 MeV, together with the available pd breakup data. The theoretical predictions agree well
with the pd breakup data and for that configuration practically no effects of the N2LO 3NF are present.

5 Summary and Conclusions

We applied the semilocal coordinate-space regularized N4LO chiral NN potential combined with the N2LO
3NF, regularized in the same way, to reactions in the 3N continuum. We checked that using elastic Nd scattering
cross section data as an additional (to the 3H binding energy) 3N observable provides an efficient tool to fix the
strengths cD and cE of the N2LO 3NF contact terms. However, the application of this tool should be restricted
to the region of the incoming nucleon laboratory energies around ≈ 60 MeV, where 3NF effects start to appear
in the cross section.

The application of that particular combination of NN and 3N forces provides at higher energies effects
for the elastic scattering cross section which are very similar to those obtained with (semi-)phenomenological
interactions. For the low-energy nucleon analyzing power Ay the application of consistent chiral forces supports
predictions of the TM99 3NF, however, the resulting effects are smaller in magnitude by a factor of ≈ 2. Thus
the N2LO 3NF is unable to explain the low-energy Ay puzzle. That 3NF is also incapable of explaining
discrepancies between data and theory for 13 MeV SST complete breakup configuration. At higher energies

n + d

p + d

N4LO 2NF

N4LO 2NF + 
N2LO 3NF

(4 lines: Diff. param.)

Witała +, Few-Body Syst 60, 19 (2019)
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Fig. 1 Cross section of Nd breakup at Space Star at EN = 13 MeV

Fig. 2 Definition of the inclined angle α of Star plane

0.3 mg/cm2 in thickness and 50 mm in diameter. By rotating the target foil, effective target area was about 100
times increased, and the target thickness reduced only 10% in a day by a 200 nA p-beam.

Two protons from pd breakup were detected by Si-detectors in coincidence, and energies E1, E2, and
flight-time difference T1−T2 were measured. The time difference was used to estimate backgrounds.

Events from pd breakup reaction were clearly seen along an E1 versus E2 locus called S-curve, and the
events were projected onto S-curve, and we obtained cross section along S-curve. A monitor detector was used
to counts p events from pd elastic scattering. Absolute cross section of pd breakup reaction was evaluated
using the monitor count and precise cross section of pd elastic scattering measured at KUTL [6].

3 Results and Conclusion

Measurements of pd breakup cross section at star were made at 13 MeV/A using a 13 MeV p-beam in 0◦ ≤
α ≤ 105◦, and a 26 MeV d-beam in 120◦ ≤ α ≤ 180◦, and at 9.5 MeV/A in 0◦ ≤ α ≤ 180◦ using a p-beam.
Typical data at 13 MeV/A are shown in Fig. 3.

Fig. 3 Cross section of pd breakup at Star at inclined angle α at E = 13 MeV/A. Curves are pd calculation with effective 3NF
by Deltuve

Yabe +, Few-Body Syst 50, 291 (2011)
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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10B spectra

Navrátil +, PRL 99, 042501 (2007)

depending on the cD variation. This is due to the fact that
the structure of the two 1!0 states is exchanged depending
on cD. From Figs. 1 and 2, we can see that for cD <"2 the
4He radius and the 6Li quadrupole moment underestimate
experiment while for cD > 0 the lowest two 1! states of
10B are reversed and the 12C B#M1; 0!0! 1!1$ is over-
estimated. We therefore select cD % "1 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as a
function of Nmax for both the chiral NN ! NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our other
p-shell nuclei.

We display in Fig. 4 the natural parity excitation spectra
of four nuclei in the middle of the p shell with both the NN
and the NN ! NNN effective interactions from ChPT. The
results shown are obtained in the largest basis spaces
achieved to date for these nuclei with the NNN interac-
tions, Nmax % 6 (6@!). Overall, the NNN interaction con-
tributes significantly to improve theory in comparison with
experiment. This is especially well demonstrated in the odd
mass nuclei for the lowest few excited states. The cele-
brated case of the ground-state spin of 10B and its sensi-
tivity to the presence of the NNN interaction is clearly
evident. There is an initial indication in these spectra that
the chiral NNN interaction is ‘‘overcorrecting’’ the inad-
equacies of the NN interaction since, e.g., the 1!0 and 4!0
states in 12C are not only interchanged but they are also
spread apart more than the experimentally observed
separation.

Table I contains selected experimental and theoretical
results, including Gamow-Teller (GT) transitions, for 6Li
and A % 10–13. A total of 68 experimental data are sum-
marized in this Table including the excitation energies of
28 states encapsulated in the rms energy deviations. Note
that the only case of an increase in the rms energy deviation
with inclusion of NNN interaction is 13C and it arises due
to the upward shift of the 7

2
" state seen in Fig. 4, an
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FIG. 4 (color online). States dominated by p-shell configura-
tions for 10B, 11B, 12C, and 13C calculated at Nmax % 6 using
@! % 15 MeV (14 MeV for 10B). Most of the eigenstates are
isospin T % 0 or 1=2, the isospin label is explicitly shown only
for states with T % 1 or 3=2. The excitation energy scales are in
MeV.

TABLE I. Selected properties of 6Li, 10;11B, and 12;13C from
experiment and theory. E2 transitions are in e2 fm4 and M1
transitions are in !2

N . The rms deviations of excited state
energies are quoted for the states shown in Fig. 4 whose spin-
parity assignments are well established and that are known to be
dominated by p-shell configurations. The total energy rms is for
the 28 excited states from Fig. 4. Results were obtained in the
basis spaces with Nmax % 6 (8 for 6Li) and HO frequency @! %
15 MeV (13 MeV for 6Li, 14 MeV for 10B). In the NN ! NNN
column, we show sensitivity of selected observables to the
change of cD by &1 at fixed Nmax and @!. The experimental
values are from Refs. [14–21].

Nucleus/property Expt. NN ! NNN NN
6Li: jE#1!1 0$j [MeV] 31.995 32.63 28.98
Q#1!1 0$ [e fm2] "0:082#2$ "0:12#4$ "0:052
!#1!1 0$ [!N] !0:822 !0:836 !0:845
Ex#3!1 0$ [MeV] 2.186 2.47(8) 2.874
B#E2; 3!1 0! 1!1 0$ 10.69(84) 3.685 4.512
B#E2; 2!1 0! 1!1 0$ 4.40(2.27) 3.847 4.624
B#M1; 0!1 1! 1!1 0$ 15.43(32) 15.04(4) 15.089
B#M1; 2!1 1! 1!1 0$ 0.149(27) 0.08(2) 0.031

10B: jE#3!1 0$j [MeV] 64.751 64.78 56.11
rp [fm] 2.30(12) 2.197 2.256
Q#3!1 0$ [e fm2] !8:472#56$ !6:327 !6:803
!#3!1 0$ [!N] !1:801 !1:837 !1:853
rms (Exp-Th) [MeV] - 0.823 1.482
B#E2; 1!1 0! 3!1 0$ 4.13(6) 3.05(62) 4.380
B#E2; 1!2 0! 3!1 0$ 1.71(0.26) 0.50(50) 0.082
B#GT; 3!1 0! 2!1 1$ 0.083(3) 0.07(1) 0.102
B#GT; 3!1 0! 2!2 1$ 0.95(13) 1.22(2) 1.487

11B: jE# 3
21

" 1
2$j [MeV] 76.205 77.52 67.29

rp# 3
21

" 1
2$ [fm] 2.24(12) 2.127 2.196

Q# 3
21

" 1
2$ [e fm2] !4:065#26$ !3:065 !2:989

!# 3
21

" 1
2$ [!N] !2:689 !2:06#1$ !2:597

rms (Exp-Th) [MeV] - 1.067 1.765
B#E2; 3

21

" 1
2! 1

21

" 1
2$ 2.6(4) 1.476 0.750

B#GT; 3
21

" 1
2! 3

21

" 1
2$ 0.345(8) 0.24(1) 0.663

B#GT; 3
21

" 1
2! 1

21

" 1
2$ 0.440(22) 0.46(2) 0.841

B#GT; 3
21

" 1
2! 5

21

" 1
2$ 0.526(27) 0.53(3) 0.394

B#GT; 3
21

" 1
2! 3

22

" 1
2$ 0.525(27) 0.76(2) 0.574

12C: jE#0!1 0$j [MeV] 92.162 95.57 84.76
rp [fm] 2.35(2) 2.172 2.229
Q#2!1 0$ [e fm2] !6#3$ !4:318 !4:931
rms (Exp-Th) [MeV] - 1.058 1.318
B#E2; 2!0! 0!0$ 7.59(42) 4.252 5.483
B#M1; 1!0! 0!0$ 0.0145(21) 0.006 0.003
B#M1; 1!1! 0!0$ 0.951(20) 0.91(6) 0.353
B#E2; 2!1! 0!0$ 0.65(13) 0.45(1) 0.301

13C: jE# 1
21

" 1
2$j [MeV] 97.108 103.23 90.31

rp# 1
21

" 1
2$ [fm] 2.29(3) 2.135 2.195

!# 1
21

" 1
2$ [!N] !0:702 !0:39#3$ !0:862

rms (Exp-Th) [MeV] - 2.144 2.089
B#E2; 3

21

" 1
2! 1

21

" 1
2$ 6.4(15) 2.659 4.584
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We use the N3LO NN interaction of [13]. We adopt the c1, c3 and c4 LEC
values as well as the value of L from the N3LO NN interaction of [13] for our local
chiral EFT N2LO NNN interaction. The regulator function was chosen in a form
consistent with that used in [11] and [13]: Fðq2;LÞ ¼ exp½%q4=L4& (11). We note
that the momentum-space N3LO NN interaction is regulated with the nucleon
momentum cutoff, while our local chiral EFT N2LO NNN interaction is regulated
with the momentum transfer cutoff. Due to the choice of the fourth power of the
momentum (11), this inconsistency is beyond the order at which our calculations
are performed. Values of the cD and cE LECs are constrained by a fit to the A ¼ 3
system binding energy [18, 14]. Obviously, additional constraints are needed to
uniquely determine values of cD and cE, see [11, 18, 14, 39] for discussions of
different possibilities. Here we are interested only in convergence properties of our

Table 1 NNN interaction parameters used in the present calculations. The regulator

function was chosen in the form Fðq2;LÞ ¼ exp½%q4=L4&

c1 [GeV%1] c3 [GeV%1] c4 [GeV%1] cD cE

%0.81 %3.2 5.4 1.0 %0.029

L [MeV] L! [MeV] M" [MeV] gA F" [MeV]

500 700 138 1.29 92.4

Fig. 6 3H ground-state energy dependence on the size of the basis. The HO frequency of

!hO ¼ 28MeV was employed. Results with (thick lines) and without (thin lines) the NNN interaction

are shown. The full lines correspond to calculations with two-body effective interaction derived from

the chiral NN interaction, the dashed lines to calculations with the bare chiral NN interaction. For

further details see the text

Local three-nucleon interaction from chiral effective field theory 135

1 MeV 
attraction
∼

NCSM

Fig. 8 4He ground-state energy dependence on the size of the basis. The HO frequencies of !hO ¼ 28

and 36MeV were employed. Results with (thick lines) and without (thin lines) the NNN interaction

are shown. The full lines correspond to calculations with three-body effective interaction, the dashed

lines to calculations with the bare interaction. For further details see the text

Fig. 9 4He point-proton rms radius dependence on the size of the basis. The HO frequencies of

!hO ¼ 28 and 36MeV were employed. Results with (thick line) and without (thin line) the NNN

interaction are shown. The three-body effective interaction was used in the calculation. For further

details see the text

138 P. Navrátil

3 MeV 
attraction
∼

2NF + 3NF2NF only



3NF contributions to ground-state energies
sd-shell nuclei

Gamow shell model

 10 MeV repulsion≲

Oxygen (sd-shell + continuum)

Stroberg+, ARNPS 69, 307 (2019)

NS69CH12_Stroberg ARjats.cls October 9, 2019 19:47

4.2. Mass Dependence of the Effective Interaction
A significant consequence of the ENO procedure is that a different valence-space interaction is
obtained for each nucleus. It is important to emphasize here that because the procedure does not
involve any fitting to data, there is no loss of predictive power. The ENO should be considered
a technique for reducing the impact of the truncation to two-body operators. In terms of com-
putational effort, the need to generate a new interaction for each nucleus makes a study of the
full sd shell more laborious, but still manageable. For nuclei in the middle of the p f shell, the
exponential scaling of the valence-space diagonalization catches up with the polynomial scaling
of the VS-IMSRG, so generating the effective interaction takes about as long as the shell model
calculation that uses it.

The need for some mass dependence of the effective interaction has been known for a long
time. The sd shell interactions presented by Kuo & Brown (6) and Kuo (7) yielded a good de-
scription of spectroscopy for a few valence particles or valence holes, but agreement deteriorated
for midshell systems (219). Investigations by Wildenthal (10) and Chung (52) suggested that a
single phenomenological adjustment could not remedy the situation, and a scaling of the TBMEs
according toA0.3 was introduced.This prescription has been adopted inmany later treatments (11,
30, 134). The scaling is typically justified in terms of the increasing nuclear radius changing the
optimal harmonic oscillator frequency (10, 11, 56, 144). While such an argument would suggest
that the core and single-particle energies should also change with mass, these effects could in prin-
ciple be absorbed into the scaling of the TBMEs (10). In contrast, the need for mass dependence
of TBMEs could be interpreted as a signal of nonnegligible three-body terms in the effective
interaction, and indeed this has been suggested a number of times (199, 200, 211).

We may expect that ENO should capture the effects of both a changing mean field and
the residual three-body effective interaction.15 Figure 7 displays binding energies per nucleon
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Figure 7
Energy per nucleon for (a) the oxygen isotopes 16 ≤ A ≤ 28 and (b) the N = Z nuclei in the sd shell
obtained with VS-IMSRG using the EM1.8/2.0 interaction compared with the results obtained with the
USDB interaction. The thinner lines indicate the effect of turning off the ENO in the VS-IMSRG
calculation or of turning off the A0.3 scaling of two-body matrix elements in the USDB interaction.
Abbreviations: ENO, ensemble normal ordering; USD, universal sd shell; VS-IMSRG, valence-space
in-medium similarity renormalization group.

15Indeed, these effects are not entirely distinct; the induced three-body interaction depends on the choice of
reference.
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Valence-space in-medium SRG

 1.5 MeV/A  
repulsion
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Ma +, PLB 802, 135257 (2020)
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4.2. Mass Dependence of the Effective Interaction
A significant consequence of the ENO procedure is that a different valence-space interaction is
obtained for each nucleus. It is important to emphasize here that because the procedure does not
involve any fitting to data, there is no loss of predictive power. The ENO should be considered
a technique for reducing the impact of the truncation to two-body operators. In terms of com-
putational effort, the need to generate a new interaction for each nucleus makes a study of the
full sd shell more laborious, but still manageable. For nuclei in the middle of the p f shell, the
exponential scaling of the valence-space diagonalization catches up with the polynomial scaling
of the VS-IMSRG, so generating the effective interaction takes about as long as the shell model
calculation that uses it.

The need for some mass dependence of the effective interaction has been known for a long
time. The sd shell interactions presented by Kuo & Brown (6) and Kuo (7) yielded a good de-
scription of spectroscopy for a few valence particles or valence holes, but agreement deteriorated
for midshell systems (219). Investigations by Wildenthal (10) and Chung (52) suggested that a
single phenomenological adjustment could not remedy the situation, and a scaling of the TBMEs
according toA0.3 was introduced.This prescription has been adopted inmany later treatments (11,
30, 134). The scaling is typically justified in terms of the increasing nuclear radius changing the
optimal harmonic oscillator frequency (10, 11, 56, 144). While such an argument would suggest
that the core and single-particle energies should also change with mass, these effects could in prin-
ciple be absorbed into the scaling of the TBMEs (10). In contrast, the need for mass dependence
of TBMEs could be interpreted as a signal of nonnegligible three-body terms in the effective
interaction, and indeed this has been suggested a number of times (199, 200, 211).

We may expect that ENO should capture the effects of both a changing mean field and
the residual three-body effective interaction.15 Figure 7 displays binding energies per nucleon
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Figure 7
Energy per nucleon for (a) the oxygen isotopes 16 ≤ A ≤ 28 and (b) the N = Z nuclei in the sd shell
obtained with VS-IMSRG using the EM1.8/2.0 interaction compared with the results obtained with the
USDB interaction. The thinner lines indicate the effect of turning off the ENO in the VS-IMSRG
calculation or of turning off the A0.3 scaling of two-body matrix elements in the USDB interaction.
Abbreviations: ENO, ensemble normal ordering; USD, universal sd shell; VS-IMSRG, valence-space
in-medium similarity renormalization group.

15Indeed, these effects are not entirely distinct; the induced three-body interaction depends on the choice of
reference.
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3NF contributions to ground-state energies
pf-shell nuclei

Perturbative calc.

 10—20 MeV/A repulsion∼

Nuclear matter

RSM

 10–20 MeV/A repulsion≲

Holt +, PRC 90, 024312 (2014)

THREE-NUCLEON FORCES AND SPECTROSCOPY OF . . . PHYSICAL REVIEW C 90, 024312 (2014)
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FIG. 4. (Color online) Calculated ground-state energies of calcium isotopes in (a) pf shell and (b) pfg9/2 shell compared with experimental
data (solid points) and AME2012 extrapolated values (open circles) [59]. Calculations are performed in the extended pfg9/2 valence space and
based on NN forces only, NN + 3N forces with empirical SPEs, and NN + 3N forces with calculated (MBPT) SPEs.

This takes into account the effects of the additional orbitals
nonperturbatively, so that the general strategy is to make the
valence space for diagonalization as large as possible and
include the contributions beyond the valence space in MBPT,
which converges better for larger valence spaces.

In this work, we perform calculations in both the 0f7/2,
1p3/2, 0f5/2, 1p1/2 valence space (pf shell) and the extended
space including the 0g9/2 orbit (pfg9/2 valence space), in
both cases on top of a 40Ca core. We take two approaches
with respect to SPEs: in all pf -shell calculations we use the
empirical GXPF1A SPEs, while for the pfg9/2 space we either
use the GXPF1A values (setting g9/2 = −1.0 MeV), or the
MBPT SPEs calculated consistently, as shown in Table I. The
shell model codes ANTOINE [19,56] and NATHAN [19] have
been used throughout this work.

The pfg9/2 space consists of orbitals beyond one-major
harmonic-oscillator shell, which means that the center-of-mass
(c.m.) motion of the valence nucleons will not factorize
in general. Following Refs. [57,58], we have investigated
possible c.m. contamination in our calculations by adding
a c.m. Hamiltonian, βHc.m., with β = 0.5, to our original
Hamiltonian. This has a modest impact on excitation spectra,
where states can be affected up to ∼200 keV. This difference
can be understood because the nonzero c.m. two-body matrix
elements are also relevant matrix elements of the MBPT
calculation, and a clear separation between these two effects
is difficult. Similarly, we find non-negligible ⟨Hc.m.⟩ values,
which point to possible c.m. admixture and/or non-negligible
occupancies of the g9/2 orbital.

There are several directions in progress to investigate
this further in both the pfg9/2 and sdf7/2p3/2 [30] spaces.
We will carry out a nonperturbative Okubo–Lee–Suzuki–
Okamoto transformation [60,61] into the standard one-major-
shell space, which is free of c.m. spurious states. This will
keep the treatment of the orbitals within the extended space
nonperturbative, while treating the MBPT configurations
perturbatively. We will also apply the IMSRG [37] to extended

valence spaces, tailoring the evolution so that the cross-shell
matrix elements have small values: ⟨Hc.m.⟩ → 0. Finally, we
will explore different valence spaces, choosing the core of
the calculations so that the c.m. factorizes. For instance, for
the neutron-rich calcium isotopes a 48Ca core can be used.
Here, we follow the calculations of ground-state energies of
Refs. [9,10,32] and present results for the spectra for the same
interactions.

III. RESULTS

A. Ground-state energies

The calculated ground-state energies for calcium isotopes
are shown for both the pf and pfg9/2 shells in Fig. 4.
These are the same as for the predictions of the neutron-rich
51–54Ca reported in Refs. [9,10]. They update the results of
Ref. [28], where 3N forces where included only to first order
in MBPT. The repulsive effect of normal-ordered 3N forces
[28,29] is evident in both valence spaces, and there is only a
small difference between the calculations with empirical and
calculated (MBPT) SPEs, which reflects the similar values
shown in Table I.

While the pf and pfg9/2 spaces give similar absolute
ground-state energies, detailed comparisons to recent experi-
mental two-neutron separation energies [9,10] and three-point
mass differences [9,32] highlight the good agreement found
with the pfg9/2-shell results. Beyond 60Ca, the ground-state
energies evolve very flatly with A, which makes a precise
prediction of the dripline difficult. Moreover, for masses
beyond 54Ca, CC calculations indicate that continuum degrees
of freedom play an important role in lowering the 1d5/2 and
2s1/2 orbitals, which are not included in our calculations.
As a result these orbitals may become degenerate with 0g9/2
near 60Ca, and further lowering of the ground-state energies
beyond 60Ca is expected [33]. Therefore, to explore reliably the
neutron-rich region towards the dripline, continuum degrees
of freedom and larger valence spaces are necessary.
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FIG. 8. (Color online) Nuclear matter energy per particle ob-
tained from the N3LO 2NF with cutoff ! = 500 MeV. The first,
second, and third order in the perturbative expansion and the
Padé approximant [2|1] are shown as a function of the Fermi
momentum kF .

from the one computed at third order, E3, for the whole range
of Fermi momenta considered. The perturbative character is
also indicated by the fact that the curve corresponding to E3 is
almost indistinguishable from the [2|1] Padé approximant one.
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FIG. 9. (Color online) Same as in Fig. 8, but including the
contribution of the N2LO 3NF.
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FIG. 10. (Color online) Same as Fig. 9, but for ! = 450 MeV.

Different considerations about the perturbative expansion
have to be drawn when including the effects of 3NF. As a
matter of fact, from inspection of Fig. 9, it can be seen that
now the curve corresponding to E3 deviates from the one given
by the [2|1] Padé approximant for kF larger than 1.6 fm−1,
indicating a worsening of the perturbative behavior. On the
other hand, using the other chiral potentials with lower cutoffs,
the perturbative behavior is satisfactory at least up to kF = 1.8
fm−1, as shown in Fig. 10 for ! = 450 MeV.

In Fig. 11 we display our predicted EOS obtained with
chiral potentials that apply different regulator functions. We
have added to each 2NF a 3NF whose LECs ci , cutoff
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FIG. 11. (Color online) Results obtained for the g.s.e. per particle
of infinite nuclear matter at third-order in perturbation theory for three
sets of chiral interactions which differ by the cutoff !.
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FIG. 7. (Color online) Same as in Fig. 6, but including the
contribution of the N2LO 3NF.

and c3, cutoff parameters, and regulator function are exactly
the same as in the corresponding N3LO NN potential; see
Table I.

In Fig. 8, we show our results, obtained at third order in the
perturbative expansion, with and without taking into account
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FIG. 8. (Color online) Results obtained for the g.s.e. per particle
of infinite neutron matter at third-order in perturbation theory for
three sets of chiral interactions which differ by the cutoff !.

3NF effects. The results obtained with 2NFs show considerable
dependence on the choice of the regulator and its cutoff param-
eter. This is at variance with the desired regulator independence
of the EFT. However, when including the contributions of the
three-body potentials, which are consistent with their 2NF
partner, regulator dependence is strongly reduced. This is
our main result and first clear evidence that modern chiral
potentials can provide model-independent results in many-
body calculations if 2NF and 3NF are treated consistently.

V. CONCLUDING REMARKS AND OUTLOOK

In this paper we have studied the regulator dependence of
many-body predictions when employing chiral two- and three-
nucleon potentials, using as a testing ground the perturbative
calculation of the neutron-matter energy per particle. We
find substantial regulator dependence of the predictions when
only 2NFs are taken into account. The main outcome of this
study is the observation that the 3NF can play a crucial role
in the restoration of regulator independence. However, this
mechanism works properly only when the chiral 2NF and 3NF
are treated consistently in the sense that the same parameters
are used for the same vertices that occur in all topologies
involved. This is particularly true for the LECs c1 and c3
occurring first at N2LO in the chiral power counting.

In Refs. [10,11] the large uncertainties of the results for
the ground-state energy per neutron trace back to the choice of
using a range of values for c1 and c3 obtained from a high-order
analysis of πN scattering [24]. This is at variance with the cis
employed in the present paper which, as reported in Sec. II,
are uniquely fixed in peripheral NN partial waves.

In closing, we note that the present investigation deals
only with identical nucleon systems and that the regulator
dependence should also be investigated in systems with
different concentrations of interacting protons and neutrons.
In infinite symmetric nuclear matter, contributions from the
intermediate-range 1π -exchange component VD and the short-
range contact interaction VE also come into play. This means
that the calculation of the g.s.e. depends also on the coupling
constants cD and cE . Even though these parameters can be
fixed in few-body systems, there is some freedom in doing so,
resulting in more latitude for the 3NF contribution in nuclear
matter (as compared to pure neutron matter).

This will be an interesting subject for a future study that
may shed more light on the topic of regulator independence
of many-body calculations with chiral potentials. The results
of such investigations will provide valuable guidance for the
proper application of these interactions in microscopic nuclear
structure calculations.
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dell’Università e della Ricerca (MIUR) under PRIN 2009, by
BMBF (the DFG cluster of excellence: Origin and Structure
of the Universe), and by DFG and NSFC (CRC110).

014322-6

Pure neutron matter Symmetric matter



Implementation of chiral forces  
to shell model



Realistic shell model (RSM)
= Shell model (valence space) with a realistic force

Valence-space diagonalization
ab initio

Configurations

Ac
tiv

e 
nu

cl
eo

ns

Shell model

Hartree-Fock

Diagonalization of Hamiltonian 
within valence model space


using harmonic-oscillator bases

Shell model | Concepts

Applicable to heavier systems

38



Realistic Hamiltonian

Chiral 3NF 
at N2LO

Single-particle

energy

Chiral 2NF

at N3LO 
+ Coulomb

Shell-model framework

Coraggio +, AP 327, 2125 (2012)

Many-body  
perturbation theory

Diagonalization 

Effective Hamiltonian
Eigenvalues 
Eigenvectors

Diagonalizationab initio NCSM

RSM:  
Our framework

No empirical inputs 
for shell-model calc.

39Shell model | Effective Hamiltonian



Many-body perturbation theory (1) Coraggio +, AP 327, 2125 (2012)

40Shell model | Effective Hamiltonian

Feshbach projection operator
Si

ng
le

-p
ar

tic
le

 le
ve

ls

Core

Valence

Beyond 
valence

P space 
(model space)

Q space

(Similarity transformation)



Many-body perturbation theory (2)
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Many-body perturbation theory (3)
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Table A.4
Same as in Table A.3 for the N3LOW potential.

nalaja nblbjb nc lc jc ndldjd J Tz LS Ẑ-box A = 6

0p3/2 0p3/2 0p3/2 0p3/2 0 1 �2.828 �2.815 �3.221
0p3/2 0p3/2 0p1/2 0p1/2 0 1 �3.554 �3.585 �3.800
0p1/2 0p1/2 0p1/2 0p1/2 0 1 �0.425 �0.394 �0.894
0p3/2 0p1/2 0p3/2 0p1/2 1 1 0.478 0.486 0.291
0p3/2 0p3/2 0p3/2 0p3/2 2 1 �0.896 �0.899 �1.111
0p3/2 0p3/2 0p3/2 0p1/2 2 1 �1.893 �1.906 �1.971
0p3/2 0p1/2 0p3/2 0p1/2 2 1 �2.077 �2.109 �2.447
0p3/2 0p3/2 0p3/2 0p3/2 0 �1 �3.573 �3.554 �3.892
0p3/2 0p3/2 0p1/2 0p1/2 0 �1 �3.779 �3.788 �3.995
0p1/2 0p1/2 0p1/2 0p1/2 0 �1 �1.033 �1.014 �1.477
0p3/2 0p1/2 0p3/2 0p1/2 1 �1 0.042 0.042 �0.161
0p3/2 0p3/2 0p3/2 0p3/2 2 �1 �1.399 �1.400 �1.620
0p3/2 0p3/2 0p3/2 0p1/2 2 �1 �1.985 �1.987 �2.064
0p3/2 0p1/2 0p3/2 0p1/2 2 �1 �2.478 �2.498 �2.791
0p3/2 0p3/2 0p3/2 0p3/2 0 0 �3.523 �3.508 �3.862
0p3/2 0p3/2 0p1/2 0p1/2 0 0 �3.743 �3.759 �3.957
0p1/2 0p1/2 0p1/2 0p1/2 0 0 �0.987 �0.966 �1.436
0p3/2 0p3/2 0p3/2 0p3/2 1 0 �2.283 �2.254 �2.676
0p3/2 0p3/2 0p3/2 0p1/2 1 0 3.631 3.626 3.682
0p3/2 0p3/2 0p1/2 0p3/2 1 0 �3.542 �3.536 �3.661
0p3/2 0p3/2 0p1/2 0p1/2 1 0 2.737 2.759 3.130
0p3/2 0p1/2 0p3/2 0p1/2 1 0 �3.462 �3.439 �3.709
0p3/2 0p1/2 0p1/2 0p3/2 1 0 3.486 3.464 3.520
0p3/2 0p1/2 0p1/2 0p1/2 1 0 1.183 1.197 1.098
0p1/2 0p3/2 0p1/2 0p3/2 1 0 �3.444 �3.423 �3.656
0p1/2 0p3/2 0p1/2 0p1/2 1 0 �1.273 �1.288 �1.254
0p1/2 0p1/2 0p1/2 0p1/2 1 0 �3.277 �3.264 �3.918
0p3/2 0p3/2 0p3/2 0p3/2 2 0 �1.396 �1.400 �1.616
0p3/2 0p3/2 0p3/2 0p1/2 2 0 �1.393 �1.396 �1.453
0p3/2 0p3/2 0p1/2 0p3/2 2 0 1.372 1.375 1.461
0p3/2 0p1/2 0p3/2 0p1/2 2 0 �4.678 �4.693 �5.098
0p3/2 0p1/2 0p1/2 0p3/2 2 0 �2.055 �2.041 �2.285
0p1/2 0p3/2 0p1/2 0p3/2 2 0 �4.675 �4.690 �5.090
0p3/2 0p3/2 0p3/2 0p3/2 3 0 �5.569 �5.568 �6.014

Fig. B.18. Two-body diagrams up to second order in perturbation theory. For the sake of simplicity, for each topologywe report
only one of the diagrams which correspond to the exchange of the external pairs of lines.2-body diagrams
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a b

Fig. 1. One-body first-order diagram. Graph (a) is the so-called self-energy diagram. Graph (b) represents the matrix element
of the harmonic oscillator potential U =

1
2m!2r2.

3.1. The diagrammatic expansion of the Q̂ -box

The methods presented in the previous subsections are based on the calculation of the Q̂ -box
function:

Q̂ (✏) = PH1P + PH1Q
1

✏ � QHQ
QH1P. (37)

The term 1/(✏ � QHQ ) can be expanded as a power series

1
✏ � QHQ

=

1X

n=0

1
✏ � QH0Q

✓
QH1Q

✏ � QH0Q

◆n

, (38)

giving rise to a perturbative expression for the Q̂ -box. The diagrammatic representation of this
perturbative expansion is a collection of diagrams that have at least one H1-vertex, are irreducible
(i.e., with at least one line not belonging to the model space between two successive vertices), and
valence linked (i.e., are linked to at least one external valence line) [21].

Currently, realistic shell-model effective hamiltonians are derived for systems with one and
two valence nucleons. The former provides the theoretical effective SP energies, while the two-
body residual interaction V eff is obtained from the Heff of the two-valence-nucleon system using a
subtraction procedure [22]. Up-to-date applications include in the Q̂ -box at most Goldstone diagrams
up to third order in H1, which take into account up to 3p � 2h excitations for the one valence-
nucleon system, and up to 4p� 2h excitations for the two valence-nucleon system. A comprehensive
work concerning the evaluation of the linked Goldstone diagrams in an angular momentum coupled
representation may be found in Ref. [23].

The one-body Q̂ -box diagram at first order in H1 is reported in Fig. 1. All other Q̂ -box diagrams up
to third order in H1 can be found in Appendix B, and are reported in Figs. B.17 and B.19 (one-body
diagrams), and in Figs. B.18 and B.20–B.22 (two-body diagrams).

From inspection of Fig. 1, it can be seen that the first-order one-body diagram is composed of the
so-called self-energy diagram (V -insertion diagram) minus the auxiliary potential U-insertion. The
U-insertion diagrams arise in the perturbative expansion owing to the presence of the -U term in H1.

The (V–U)-insertion diagrams turn out to be identically zero when employing a self-consistent
Hartree–Fock (HF) auxiliary potential [19]. It is worth noting that in most applications the standard
choice for the auxiliary potential is the harmonic-oscillator (HO) one, and that the (V–U)-insertion
diagrams are neglected, assuming that the differences between the HO and the HF single-particle
wavefunctions are negligible. In Section 3.4, we shall discuss about the contribution of these terms,
comparing different effective hamiltonians derived starting from Q̂ -boxes with and without (V–U)-
insertion diagrams.

As we pointed out before, in the existing literature the effective hamiltonians are derived taking
into account in the Q̂ -box at most diagrams up to the third order, being computationally prohibitive
to go to higher-order.

In order to have a better estimate of the value to which the perturbation series should converge,
it is helpful to resort to the Padè approximant theory [24,25], and to calculate the Padè approximant
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Table A.3
Two-body matrix elements (in MeV) of different effective hamiltonians derived calculating the Padè approximant [2|1] of the
Q̂ -box from the N3LO potential. They are antisymmetrized, and normalized by a factor 1/

p
(1 + �ja jb )(1 + �jc jd ). Labels are the

same as in Table A.1.

nalaja nblbjb nc lc jc ndldjd J Tz LS Ẑ-box A = 6

0p3/2 0p3/2 0p3/2 0p3/2 0 1 �1.954 �1.926 �2.298
0p3/2 0p3/2 0p1/2 0p1/2 0 1 �3.636 �3.630 �3.804
0p1/2 0p1/2 0p1/2 0p1/2 0 1 0.727 0.725 0.358
0p3/2 0p1/2 0p3/2 0p1/2 1 1 0.611 0.615 0.425
0p3/2 0p3/2 0p3/2 0p3/2 2 1 �0.879 �0.876 �1.056
0p3/2 0p3/2 0p3/2 0p1/2 2 1 �1.677 �1.704 �1.737
0p3/2 0p1/2 0p3/2 0p1/2 2 1 �1.824 �1.887 �2.163
0p3/2 0p3/2 0p3/2 0p3/2 0 �1 �2.746 �2.742 �3.062
0p3/2 0p3/2 0p1/2 0p1/2 0 �1 �3.754 �3.760 �3.958
0p1/2 0p1/2 0p1/2 0p1/2 0 �1 0.021 �0.030 �0.400
0p3/2 0p1/2 0p3/2 0p1/2 1 �1 0.135 0.111 �0.054
0p3/2 0p3/2 0p3/2 0p3/2 2 �1 �1.367 �1.370 �1.564
0p3/2 0p3/2 0p3/2 0p1/2 2 �1 �1.747 �1.783 �1.832
0p3/2 0p1/2 0p3/2 0p1/2 2 �1 �2.205 �2.295 �2.538
0p3/2 0p3/2 0p3/2 0p3/2 0 0 �2.656 �2.642 �2.976
0p3/2 0p3/2 0p1/2 0p1/2 0 0 �3.751 �3.809 �3.932
0p1/2 0p1/2 0p1/2 0p1/2 0 0 0.121 0.085 �0.271
0p3/2 0p3/2 0p3/2 0p3/2 1 0 �1.902 �1.889 �2.366
0p3/2 0p3/2 0p3/2 0p1/2 1 0 3.615 3.659 3.680
0p3/2 0p3/2 0p1/2 0p3/2 1 0 �3.581 �3.619 �3.698
0p3/2 0p3/2 0p1/2 0p1/2 1 0 2.794 2.832 3.072
0p3/2 0p1/2 0p3/2 0p1/2 1 0 �3.046 �3.085 �3.352
0p3/2 0p1/2 0p1/2 0p3/2 1 0 3.224 3.301 3.347
0p3/2 0p1/2 0p1/2 0p1/2 1 0 1.096 1.128 1.153
0p1/2 0p3/2 0p1/2 0p3/2 1 0 �3.109 �3.209 �3.422
0p1/2 0p3/2 0p1/2 0p1/2 1 0 �1.143 �1.205 �1.247
0p1/2 0p1/2 0p1/2 0p1/2 1 0 �2.113 �2.166 �2.850
0p3/2 0p3/2 0p3/2 0p3/2 2 0 �1.369 �1.370 �1.554
0p3/2 0p3/2 0p3/2 0p1/2 2 0 �1.230 �1.252 �1.286
0p3/2 0p3/2 0p1/2 0p3/2 2 0 1.207 1.227 1.285
0p3/2 0p1/2 0p3/2 0p1/2 2 0 �4.280 �4.331 �4.760
0p3/2 0p1/2 0p1/2 0p3/2 2 0 �2.062 �2.134 �2.281
0p1/2 0p3/2 0p1/2 0p3/2 2 0 �4.373 �4.423 �4.876
0p3/2 0p3/2 0p3/2 0p3/2 3 0 �5.137 �5.118 �5.565

Fig. B.17. One-body second-order diagrams. The asterisk indicates non-symmetric diagrams, which occur always in pairs
giving equal contributions. For the sake of simplicity we report only one of them.1-body diagrams
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Thus we find, in Eqs. (298), (300), and (301), nonvanishing terms as

A(2B)
abc,def = af : bced : �ae : bcfd : +ad : bcfe : �bf : aced : +be : acfd : �bd : acfe :

+ cf : abed : �ce : abfd : +cd : abfe :, (305)

A(1B)
abc,def = afbd : ce : �afbe : cd : +afce : bd : �afcd : be : +aebf : cd : �aebd : cf :

� aecf : bd : �aecd : bf : �adbf : ce : �adbe : cf : +adcf : be : �adce : bf :

� bfce : ad : +bfcd : ae : +becf : ad : +becd : af : �bdcf : ae : +bdce : af :, (306)

A(0B)
abc,def = afbdce� afbecd+ aebfcd� aebdcf � adbfce+ adbecf, (307)

where we use the relation [5, 27],

: ↵���✏ · · ·! � · · · := (�)P�✏� : ↵� · · ·!� · · · :, (308)

where P is the number of transpositions of all the contracted-pair operators to the rest normal-
ordered operators. For example,

: ↵���✏⇣ : = (�)0↵� : ��✏⇣ :, : ↵���✏⇣ := (�)1↵� : ��✏⇣ :, : ↵���✏⇣ := (�)5�✏ : ↵��⇣ :,

: ↵���✏⇣ : = (�)0↵��� : ✏⇣ :, : ↵���✏⇣ := (�)2↵��✏ : �⇣ :, : ↵���✏⇣ := (�)7�✏�⇣ : ↵� : .
(309)
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